Kẻ đường cao AF.
Vì BD \(\perp\) BA nên \(\widehat{DBA}\) = 90o
Ta có: \(\widehat{DBH}\) + \(\widehat{DBA}\) + \(\widehat{ABF}\) = 180o
=> \(\widehat{DBH}\) + \(\widehat{ABF}\) = 90o (1)
Áp dụng tính chất tam giác vuông ta có:
\(\widehat{ABF}\) + \(\widehat{BAF}\) = 90o (2)
Từ (1) và (2) suy ra:
\(\widehat{DBH}\) + \(\widehat{ABF}\) = \(\widehat{ABF}\) + \(\widehat{BAF}\)
=> \(\widehat{DBH}\) = \(\widehat{BAF}\)
Xét \(\Delta\)BHD vuông tại H và \(\Delta\)AFB vuông tại F có:
BD = AB (gt)
\(\widehat{DBH}\) = \(\widehat{BAF}\) (c/m trên)
=> \(\Delta\)BHD = \(\Delta\)AFB (ch - gn)
=> DH = BF (2 cạnh t/ư) (3)
Chứng minh tương tự:
\(\Delta\)EKC = \(\Delta\)CFA (ch - gn)
=> EK = CF (2 cạnh t/ư) (4)
Ta có: BF + CF = BC (5)
Thay (3); (4) vào (5) ta được:
DH + EK = BC \(\rightarrow\) đpcm