Vẽ hơi lệch bạn chỉnh m1 chút
a) Vì AH là tia pg của góc A
⇒ góc BAH = góc CAH= \(\frac{A}{2}\)
Xét tam giác AHB và tam giác AHC có
góc BAH = góc CAH ( cmt )
AB = AC ( gt )
AH là cạnh chung
⇒ tam giác AHB = tam giác AHC
Vẽ hơi lệch bạn chỉnh m1 chút
a) Vì AH là tia pg của góc A
⇒ góc BAH = góc CAH= \(\frac{A}{2}\)
Xét tam giác AHB và tam giác AHC có
góc BAH = góc CAH ( cmt )
AB = AC ( gt )
AH là cạnh chung
⇒ tam giác AHB = tam giác AHC
Cho tam giác ABC vuông tại A ( AB > AC) . Tia phân giác góc B cắt AC ở D. Kẻ DH vuông góc với BC. Trên tia AC lấy điểm E sao cho AE = AB . Đường thẳng vuông góc với AE tại E cắt tia DH ở K . Chứng minh rằng :
a)BA = BH
b)\(\widehat{DBK}=45^O\)
c)Cho AB = 4 cm, tính chu vi tam giác DEK
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho \(\Delta ABC\) vuông tại A . Kẻ AH vuông góc với BC ( \(H\in BC\) ) . Tia phân giác của các góc \(\widehat{HAC}\) và \(\widehat{HAB}\) lần lượt cắt BC ở D , E . Tính độ dài đoạn thẳng DE biết AB = 5cm ; AC = 12cm
Cho tam giác ABC vuông tại C biết AB = 13 cm AC = 5 cm. Tia phân giác của góc A cắt cạnh BC tại E. kẻ EK vuông góc với AB tại K a, Tính BC. Chứng minh tam giác ACE bằng tam giác AKE b, so sánh CE và BE c, Kẻ CH vuông góc với AB tại H. Chứng mình CK là tia phân giác của góc HCB Cho mình câu trả lời nhanh với ạ
Bài 1: Cho tam giác ABC có góc A = 120 độ, đường phân giác AD (D thuộc BC). Vẽ DE vuông góc với AB, DF vuông góc với AC.
a) Chứng minh tam giác DEF đều.
b) Từ C kẻ đường thẳng song song với AD cắt AB tại M. CM tam giác AMC đều.
c. CM MC vuông góc với BC.
d. Tính DF và BD biết AD= 4cm.
Cho tam giác ABC vuông tại A.Kẻ AH vuông góc với BC (H€BC).Tia phân giác góc HAC cắt cạnh BC ở D và tia phân giác HAB cắt cạnh BC ở E. Chứng minh rằng AB + AC = BD + EC. Mn giải hộ e câu này vs ạk:)))
Cho tam giác ABC vuông tại A.Tia phân giác góc ABC cắt AC tại D.Trên cạnh BC, lấy điểm E sao cho BE=BA a) Chứng minh tam giác ABD=tam giác EBD b) Chứng minh BD vuông góc với AE tại H c) Qua A; kẻ đường thẳng song song với BD cắt ED tại K.Chứng minh Tam giác ADK cân và từ đó suy ra D là trung điểm của EK d) Chứng minh KE < 2AB
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM