Câu 4: Cho tam giác ABC vuông tại A(AB < AC) phân giác góc B cắt AC tại D .Kẻ DE vuông góc BC tại E. a/Chứng minh tam giác ABD = tam giác EBD b/Chứng minh BD là đường trung trực của đoạn thẳng AB. c/ Chứng minh: AB + AC > BC + DF
CHo tam giác ABC có AB=9cm, AC= 12 cm và BC = 15 cm. Vẽ tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy điểm E sao cho BE=BA. Đường thẳng DE cắt đường thẳng AB tại F. a, Chứng minh tam giác ABC vuông. b, Chứng minh DE vuông góc với BC rồi so sánh AD và DC. c, Gọi M, N lần lượt là trung điểm của AE và CF. CHứng minh ba điểm M,D,N thẳng hàng
mn giúp mik vs mik cần gấp.
cho tam giác ABC vuông tại A (AB<AC) tia phân giác của góc A cắt BC tại D qua D kẻ đường thẳng vuông góc với BC cắt AC tại E trên AB lấy điểm F sao cho AF=AE chứng minh:
a) Góc B= góc DEC
b) Tam giác DBE là tam giác cân
c)Chứng minh DB=DE
Cho tam giác ABC vuông tại B ,Vẽ AD là tia phân giác góc BAC (D thuộc BC).Từ D kẻ De vuông góc AC (E thuộc AC).Gọi F là giao điểm của tia DE và AB .a)Chứng minh :tam giác ABE là tam giác cân.b)Tam giác ADF=Tam giác ADC.c) Chứng minh BA+BC>DE+AC
Cho tam giác ABC cân tại A (góc A< 90 độ). Vẽ tia phân giác CD của góc C (D thuộc AB). Qua D vẽ DF vuông góc với D (F thuộc AC). Vẽ DE song song với BC (E thuộc AC). Gọi I là giao điểm của tia phân giác của góc BAC với DE. a)CM: E là trung điểm của FC. b) CM: FC=4IC
Cho tam giác ABC có AB = AC, tia phân giác của góc A cắt BC tại D. Từ D kẻ DE vuông góc với AB tại E và DF vuông góc với AC tại F. Chứng minh rằng: a) DE = DF ; b) BDE = CDF ; c) AD vuông góc với BC.
Bài 5 Cho tam giác ABC vuông tại A ( AB < AC ). Trên cạnh BC lấy điểm D sao cho AB = BD. Vẽ tia phân giác của ABC cắt AC tại E, gọi F là giao điểm của DE và AB.
1) Chứng minh: ABE = DBE.
2) Chứng minh – BE vuông góc với AD tại M
3) Gọi N là trung điểm của CF. Chứng minh – 3 điểm B, E, N thẳng hàng.
cho tam giác abc c vuông tại a kẻ ah vuông góc bc tia phân giác của góc hac cắt bc tại d qua d kẻ dk vuông góc ac tia phân giác của bha cắt bc tại e chứng minh ab+ac=bc+de