Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/2
=>BD=3/5BC
=>BD/BM=3/5:1/2=6/5
=>\(S_{ABD}=\dfrac{6}{5}\cdot S_{ABM}\)
=>\(S_{AMD}=\dfrac{1}{5}\cdot S_{ABM}=\dfrac{1}{5}\cdot\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{10}\cdot S_{ABC}\)
Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/2
=>BD=3/5BC
=>BD/BM=3/5:1/2=6/5
=>\(S_{ABD}=\dfrac{6}{5}\cdot S_{ABM}\)
=>\(S_{AMD}=\dfrac{1}{5}\cdot S_{ABM}=\dfrac{1}{5}\cdot\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{10}\cdot S_{ABC}\)
Cho tam giác ABC vuông tại A có đường cao AH và đường trung tuyến AM. Biết AH=3cm; HB=4cm. Hãy tính AB,AC,AM và diện tích tam giác ABC
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
c.Chứng minh AD là tia phân giác của góc MAH.
+ Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
Cho △nhọn ABC có ∠A= 2∠B. Kẻ đường phân giác AD và đường cao AH
a) CMR AC2=DC.BC
b) CMR BC2-AC2=AB.AC
c) CMR S△ABC=\(\dfrac{AH^2}{2\sin\text{∠}BAC}\)
d) Biết ∠BAC=80°. Tính \(\dfrac{S_{\Delta ADH}}{S_{\Delta ABC}}\) phụ thuốc vào tỉ số lượng giác của các gọc nhọn
Giúp em câu c,d với ạ
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P. a.Chứng minh MP // AH. b.So sánh góc MAP,MPA và PAS. c.Chứng minh AD là tia phân giác của góc MAH.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.
Cho tam giác ABC vuông tại A (AB > AC).Đường cao AH , trung tuyến AM,phân giác AD lần lượt cắt đường tròn ngoại tiếp tam giác tại S,N,P.
a.Chứng minh MP // AH.
b.So sánh góc MAP,MPA và PAS.