a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của NC
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Xét tứ giác ANMC có
I là trung điểm của AM
I là trung điểm của NC
Do đó: ANMC là hình bình hành
Suy ra: AN//MC
hay AN//BC
ho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm K sao cho BK=BA. Gọi M là trung điểm của đoạn thẳng AK. a) Chứng minh: ∆AMB=∆KMB b) Đường thẳng BM cắt đường thẳng AC tại D. Chứng minh: DK vuông góc với BC. c) Trên tia đối của tia AB lấy điểm H sao cho ah=kc chứng minhh d k thẳng hàng
7.Cho ABC, K là trung điểm của AB , E là trung điểm của AC . a) Trên tia đối của tia KC lấy điểm M sao cho MK KC = . Chứng minh AM=BC. b) Trên tia đối của tia EB lấy điểm N sao cho EN EB = . Chứng minh AN=BC c) Chứng minh A, M, N thẳng hàng.
Câu 4:
Cho tam giác ABC vuông tại A. Điểm M là trung điểm của cạnh BC. Trên
tia đối của tia MA lấy điểm E sao cho ME=MA
a/ Chứng minh △AMC=△EMB.
b/ Chứng minh AB // CE.
c/ Gọi I là một điểm trên cạnh AC, K là một điểm trên đoạn thẳng EB sao cho AI=EK. Chứng minh rằng ba điểm I, M, K thẳng hàng.
Cho tam giác ABC , M là trung điểm của cạnh BC . Trên tia đối của MA lấy điểm E sao cho : ME = MAa, Chứng minh tam giác AMC = tam giác EMB b,Chứng minh AB song song với CEc,Gọi I một điểm trên cạnh AC , K là một điểm trên đoạn thẳng EB sao choAI=EK. Chứng minh I,M,K thẳng hàng
Cho tam giác ABC có AB=AC , M là trung điểm của BC
a) Chứng minh tam giác ABM= tam giác ACM
b) Chứng minh AM vuông góc với BC
c) Gọi I là trung điểm của AM , trên tia BI lấy điểm H sao cho BI=IH. Chứng minh AH song song với BC
d) Qua M kẻ đường thẳng song song với AC cắt đường thẳng AH tại K . Chứng minh A là trung điểm của HK
( trình bày giúp mình câu c,d thôi ạ )
Cho tam giác ABC cân tại A, AM là phân giác góc A (M thuộc BC)
a/ chứng minh MB = MC
b/ Gọi I là trung điểm AC. Trên tia đối của tia đối của tia IB, lấy D sao cho BI = ID. Chứng minh AB // CD
c/ Gọi K là giao điểm của AM và CD. Chứng minh KC + IB + CD > AM + IA
cho tam giác ABC ( AB<AC) , trên cạnh Bc lấy điểm E ( E không trùng với B và C ) . gọi I là trung điểm của Ae. đường thẳng đi qua và song song với BC cắt tia BI tại M
a/ chứng minh rằng am=be
b/ trên tia đối của tia IC lấy điểm N sao cho In=IC . Chứng minh rằng AN // Ec và ba điểm M,A,N thẳng hàng
c/ Quá I kẻ đường thẳng vuông góc với NC , cắt đường thẳng Mn tại F . Chứng minh rằng Cn là tai phân giác của góc BCF
Cho tam giác ABC có ba góc nhọn. (AB<AC). Gọi D là trung điểm của cạnh AC. Trên tia đối của tia DB lấy điểm M sao cho DM=DB
a) Chứng minh: Tam giác ADB=Tam giác CDM
b) Chứng minh AB//CM
c)Chứng minh AM=BC
d) Trên tia MC lấy điểm N sao cho C là trung điểm của MN.Chứng minh AC//BN
e)Gọi I,K lần lượt là trung điểm của AB và CM. Chứng minh: ba điểm K,D,I thẳng hàng