Chương II : Tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Yến Nga

Cho tam giác ABC có AB = AC. Gọi M là trung điểm của AB. Vẽ điểm D sao cho B là trung điểm của AD. Chứng minh CD = 2CM

Sakura Nguyen
15 tháng 12 2017 lúc 0:43

Trên tia đối của tia MC lấy điểm E sao cho M là trung điểm của CE.|
Xét tam giác AME và tam giác BMC, có:
ME=MC (do M là trung điểm của CE)
EMA=BMC (đối đỉnh)
AM=BM ( do M là trung điểm của AB)|
Do đó tam giác AME= tam giác BMC (c.g.c)
=> AE=BC ( hai cạnh tương ứng)
Vì BD=BA (do B là trung điểm của AD)
Mà BA=AC (gt)=> BD=AC
Từ tam giác AME= tam giác BMC (cmt)
=>EAM=CBM ( hai góc tương ứng)
Ta có: EAC=EAM+MAC
hay EAC=CBM+MAC (*)
Vì DBC là góc ngoài tai đỉnh B của tam giác ABC nên:
DBC=BAC+ACB
Mà ACB=ABC (do tam giác ABC cân)
=> DBC=BAC+ABC (**)
Từ(*) và (**) suy ra DBC=EAC
Xét tam giác BDC và tam giác AEC, có:
BD=AC(cmt)
DBC=EAC(cmt)
BC=AE (cmt)
Do đó tam giác BDC= tam giác AEC (c.g.c)
=> EC=DC ( hai cạnh tương ứng)
Mặt khác CM=2EC ( do M là trung điểm của EC)
=> DC=2CM
Vậy CD=2CM (đpcm)
( hình tự vẽ nha)


Các câu hỏi tương tự
Mai Chi
Xem chi tiết
lilith.
Xem chi tiết
Cao Bảo Nam
Xem chi tiết
Nguyễn Nguyên Anh
Xem chi tiết
Đức Vương Hiền
Xem chi tiết
CHI TRAN
Xem chi tiết
Minh An Hồ Thị
Xem chi tiết
Bacon_Dat
Xem chi tiết
Lâm Quốc Hưng
Xem chi tiết