Cho tam giác ABC có BC < BA, đường phân giác BE và trung tuyến BD ( E và D thuộc AC). Đường thẳng vuông góc với BE kẻ từ C cắt BE,BD tại F và G. Chứng minh rằng:a)GE//BCb)DF đi qua trung điểm của GE
Cho tam giác ABC có BA>BC. BE là phân giác và BD là trung tuyến của tam giác. Đường thẳng qua C vuông góc BE cắt BE, BD,BA lần lượt tại F,G và K. DF cắt BC tại M. CMR
a) MB=MC
b)DADE =1+BKDF
c)GE song song BC
1. Cho tam giác ABC cân tại A. Đường phân giác góc B cắt AC tại M, đường phân giác góc C cắt AB tại N. Cm MN // BC.
2. Cho hình thoi ABCD. Trên cạnh BC, BA lần lượt lấy điểm E và F sao cho BF/BE=2/3. Đoạn thẳng FE cắt đoạn thẳng BD tại I.
a) Tính IE/IF.
b) Giả sử FE = 12cm. Tính độ dài IE và IF.
( Mình đang cần gấp mong các bạn giúp mình ạ.)
Cho tam giác ABC(AB<AC), AD là phân giác trong của góc A. Qua trung điểm E của cạnh BC, vẽ đường thẳng song song với AD, cắt cạnh AC tại F, cắt đường thẳng AB tại G. Chứng minh CF=BG
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Gọi BD là đường phân giác của tam giác ABC.
a) Tính độ dài DA, DC.
b) Tia phân giác của góc C cắt BD tại I. Gọi M là trung điểm của BC. Chứng minh \(\widehat{BIM}\) = 90o
Cho DABC, kẻ phân giác trong và ngoài của góc B cắt AC ở I và D. Từ C kẻ đường thẳng song song với AB cắt BI, BD lần lượt tại E, F.
Chứng minh IB.IC = IA.IE;
Chứng minh CE = CF.
Từ I, D kẻ đường thẳng song song với BC cắt đường thẳng AB lần lượt tại M, N. Tính độ dài AB, MN; EF nếu MI = 4cm và BC = 12cm.
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng:
a) AB là tia phân giác của góc DAH.
b) BH.CD = BD.CH
Cho tam giác ABC có ba độ dài ba cạnh AB=16cm, BC=21cm, AC=32cm. Đường phân giác trong và ngoài góc Acắt BC lần lượt tại D và E
a) Chứng minh B là trung điểm của EC
b)Tính DE?
Cho tam giác ABC vuông tại A (AB < AC), kẻ đường cao AH, đường trung tuyến AM. Đường thẳng vuông góc với AM tại A cắt đường thẳng BC tại D. Chứng minh rằng: a) AB là tia phân giác của góc DAH. b) BH.CD = BD.CH