Cho tam giác ABC đều, M là điểm bất kì thuộc miền trong tam giác. Gọi D, E, F lần lượt là hình chiếu vuông góc của M lên các cạnh BC, AB, AC và I là tâm đường tròn nội tiếp tam giác ABC. Tìm giá trị của k biết rằng \(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}=k\overrightarrow{MI}\)
Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC biết A(-1;-1). Điểm I(3;2) , J(1;1) lần lượt là tam các đường trong ngoại tiếp và nội tiếp tam giác đó . Viết phương trình cạnh BC
Cho tam giác ABC vuông tại A, G là trọng tâm tam giác ABC. Tính độ dài cạnh AB biết cạnh AC = a, và góc giữa 2 vec tơ\(\overrightarrow{GB}\) và \(\overrightarrow{GC}\) là nhỏ nhất
Trên mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A (a; 0) và B(0; b) thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O, bán kính bằng 1. Khi đó AB có độ dài nhỏ nhất bằng ?
Trong hệ tọa độ Oxy cho tam giác ABC cân tại A, M (-1; 1) và N (-1; -7) lần lượt thuộc các cạnh AB và tia đối của CA sao cho BM = CN. Biết rằng đường thẳng BC đi qua điểm E (-3; -1) và điểm B thuộc đường thẳng x + 4 = 0. Tìm tung độ điểm A
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A\(\left(\dfrac{4}{5},\dfrac{7}{5}\right)\), hai đường phân giác trong vẽ từ B và C có phương trình lân lượt là \(x-2y-1=0\) và \(x+3y-1=0\). Tìm tọa độ điểm A' đối xứng với A qua phân giác góc B và viết phương trình các đường thẳng chứa cạnh của tam giác.
Hãy phát biểu các khẳng định sau đây dưới dạng điều kiện cần và đủ
Tam giác ABC vuông tại A thì \(BC^2=AB^2+AC^2\)
Tam giác ABC có các cạnh thỏa mãn hệ thức \(BC^2=AB^2+AC^2\) thì vuông tại A
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có M (2;3) N(-2;7) lần lượt là trung điểm của AB AC với A(a;b) (a thuộc Z) thuộc đường thẳng d: \(\left\{{}\begin{matrix}x=1-2t\\y=2+t\end{matrix}\right.\). Biết diện tích tam giác ABC bằng 4. Tính S=\(a^2-b^3\)