Ôn tập cuối năm môn Đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kinder

Trên mặt phẳng tọa độ Oxy, trên các tia Ox, Oy lần lượt lấy các điểm A (a; 0) và B(0; b) thay đổi sao cho đường thẳng AB luôn tiếp xúc với đường tròn tâm O, bán kính bằng 1. Khi đó AB có độ dài nhỏ nhất bằng ?

Lê Thị Thục Hiền
9 tháng 7 2021 lúc 16:12

 

Có \(d_{\left(O;AB\right)}=R=1\)

Áp dụng hệ thức lượng có:

\(d_{\left(O;AB\right)}.AB=OB.OA\)

\(\Leftrightarrow AB=OB.OA\)

\(\Leftrightarrow AB\le\dfrac{OB^2+OA^2}{2}=\dfrac{AB^2}{2}\)

\(\Leftrightarrow AB^2-2AB\ge0\)\(\Rightarrow AB\ge2\)

Vậy \(AB_{min}=2\) khi \(\left\{{}\begin{matrix}OA=OB\\OA.OB=2\end{matrix}\right.\)\(\Leftrightarrow a=b=\sqrt{2}\)


Các câu hỏi tương tự
DuaHaupro1
Xem chi tiết
DuaHaupro1
Xem chi tiết
Kinder
Xem chi tiết
Emilia Nguyen
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
Kinder
Xem chi tiết
DuaHaupro1
Xem chi tiết