a) Ta có: \(\widehat{ABC}\) + \(\widehat{ACB}\) = 90o (t/c tgv)
Lại có: \(\widehat{OBC}\) = \(\frac{1}{2}\)\(\widehat{ABC}\) (OB là tia pg)
\(\widehat{OCB}\) = \(\frac{1}{2}\)\(\widehat{ACB}\) (OC là tia pg)
=> \(\widehat{OBC}\) + \(\widehat{OCB}\) = \(\frac{1}{2}\widehat{ABC}\) + \(\frac{1}{2}\widehat{ACB}\)
=> \(\widehat{OBC}\) + \(\widehat{OCB}\) = \(\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)\)
=> \(\widehat{OBC}\) + \(\widehat{OCB}\) = \(\frac{1}{2}.90^o\)
=> \(\widehat{OBC}\) + \(\widehat{OCB}\) = 45o
Áp dụng tc tổng 3 góc trong 1 tg ta có:
\(\widehat{OBC}\) + \(\widehat{OCB}\) + \(\widehat{BOC}\) = 180o
=> 45o + \(\widehat{BOC}\) = 180o
=> \(\widehat{BOC}\) = 135o
b) c) Để lúc khác, giờ đi ngủ đã