Hình vẽ:
Giải:
a) Có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Tổng ba góc của tam giác)
Hay \(90^0+60^0+\widehat{C}=180^0\)
\(\Leftrightarrow\widehat{C}=180^0-90^0-60^0=30^0\)
b) Vì AD là tia phân giác của \(\widehat{BAC}\)
Nên \(\widehat{DAC}=\widehat{DAB}=\dfrac{1}{2}\widehat{BAC}=\dfrac{1}{2}.90^0=45^0\)
Lại có: \(\widehat{DAB}+\widehat{ADB}+\widehat{B}=180^0\) (Tổng ba góc của tam giác)
Hay \(45^0+\widehat{ADB}+60^0=180^0\)
\(\Leftrightarrow\widehat{ADB}=180^0-45^0-60^0=75^0\)
Hay \(\widehat{ADH}=75^0\)
c) Có: \(\widehat{ADH}+\widehat{AHD}+\widehat{HAD}=180^0\) (Tổng ba góc của tam giác)
Hay \(75^0+90^0+\widehat{HAD}=180^0\)
\(\Leftrightarrow\widehat{HAD}=180^0-90^0-75^0=15^0\)
d) Có: \(\widehat{HAC}+\widehat{C}+\widehat{AHC}=180^0\) (Tổng ba góc của tam giác)
Hay \(\widehat{HAC}+30^0+90^0=180^0\)
\(\Leftrightarrow\widehat{HAC}=180^0-90^0-30^0=60^0\)
Mà \(\widehat{ABC}=60^0\)
\(\Leftrightarrow\widehat{HAC}=\widehat{ABC}\)
Vậy ...
Chúc bạn học tốt!