Cho ΔABC cân tại A. Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D; M là trung điểm BC.
a) Chứng minh: AD là phân giác của và A, M, D thẳng hàng.
b) Qua B kẻ đường thẳng vuông góc AC cắt AC tại K, cắt AD tại I. Chứng minh: BC là đường trung trực của ID.
Cho tam giác ABC cân tại A Trên tia đối của tia BC lấy điểm D Trên tia đối của tia CB lấy điểm E Sao cho BD=CE.Kẻ BH vuông góc AD (H thuộc AD),kẻ CK vuông góc AE (K thuộc AE) a,c/m BH=CK b, c/m tam giác AHB= tam giác AHC c,c/m BC//HK
cho góc nhọn xOy.trên hai canh OX và OY lần lượt lấy hai điểm A và B sao cho OA =OB.tia phân giác của góc XOY cắt ab tại I.
a/ chứng minh: oi là đường trung trực của AB
b/ Kẻ AD vuông góc với Oy (D thuộc Oy);C là giao điểm của AD với OI .Chứng minh BC vuông góc với Ox.
c/BC cắt Ox tại E. C hứng minh :DE song song với AB
Cho tam giác ABC vuông tại A. Các tia phân giác BM và CN cắt nhau tại I. Gọi D, E, F lần lượt là hình chiếu của điểm I xuống các cạnh AB, AC, BC.
a) So sánh AN và BN; AM và CN.
b) Chứng minh AD = AE.
c) Tính độ dài các đoạn thẳng AD, AE nếu AB = 8cm, AC = 15cm.
\
Cho tam giác ABC , tia phân giác góc B và C cắt nhau ở I . Từ I kẻ đường thẳng song song với BC cắt AB ở D và AC ở E . Chứng minh: 1) Tính BAD và ADM . 2) Tính ADM .
cho tam giác ABC điểm O nằm trong tam giác tia AO cắt BC tại điểm I
a) so sánh góc BOI và góc BAI
b)so sánh góc BOC và góc BAC
c) nếu góc BAC =90 độ thì góc BOC là góc tù
viết cả định lý với kết luận nữa nhé|
mk cảm ơn
Bài 1. Cho tam giác ABC, biết : AB =3cm,AC= 4cm,BC= 5cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b) Trên tia đối của tia AC lấy điểm D sao cho CD = 6cm. Tính độ đài đoạn thẳng BD.
Bài 2. Cho tam giác ABC, biết AB =12cm,AC= 9cm,BC=15cm.
a) Chứng tỏ tam giác ABC vuông .
b) Kẻ AH vuông góc với BC tại H, biết AH = 7,2 cm. Tính độ đài đoạn thẳng BH và
HC.
Bài 3.Cho tam giác nhọn ABC (AB < AC). Kẻ AH vuông góc với BC tại H. Tính chu
vi tam giác ABC biết
AC=20cm, AH =12cm, BH =5cm .
Bài 4. Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC
a) Chứng minh tam giác AHB= AHC và H là trung điểm của BC.
b) Từ H kẻ HM vuông góc với AB tại M. Trên cạnh AC lấy điểm N sao cho
BM =CN .Chứng minh HN vuông góc AC .
Bài 5. Cho tam giác ABC cân tại A, tia phân giác của góc A cắt BC tại I
a) Chứng minh tam giác AIB = tam giác AIC
b) Lấy M là trung điểm AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Chứng
minh AD // BC và AI vuông góc AD.
c) Vẽ AH vuông góc BD tại H, vẽ CK vuông góc BD tại K. Chứng minh BH = DK
Bài 6.Cho tam giác ABC vuông tại A, đường phân giác BD.Kẻ AE = BD (E thuộc BD). AE cắt BC ở K.
a) Chứng minh tam giác ABE= KBE và suy ra tam giác BAK cân.
b) Chứng minh tam giác ABD =KBD và DK vuông góc BC.
c) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh AK là tia phân giác của
HAC.
Bài 1: Cho ∆ABC vuông tại B. Tia phân giác góc A cắt cạnh BC tại D. Trên tia AC lấy điểm H sao cho AH=AB a) Chứng minh: ∆ABD = ∆AHD. b) Chứng minh: DH vuông góc với AC