cho tam giác abc có ab= 3cm ac= 4cm; bc=5cm kẻ đường cao ah trên nửa mặt phẳng bờ chứa là đường thẳng ac có chứa điểm b,kẻ tia Cx//ab. trên tia cx lấy điểm d sao cho cd=ab . kẻ dk vuông góc vs bc ( k thuộc bc ) lấy o là trung điểm BC
chứng minh ABC vuông góc với A Vẽ hình ( cái mik cần nhất)Cho tam giác cân ABC ;đáy BC,góc BAC=20o . Trên cạnh AB lấy điểm E sao cho góc BCE = 50o . Trên cạnh AC lấy điểm D sao cho góc CBD= 60o . Qua D kẻ đường thẳng song song với BC , nó cắt AB tại F . Gọi O là giao điểm của BD và CF
a. Chứng minh tam giác AFC= tam giác ADB
b. CM tam giac OFD và tam giác OBC là các tam giác đều
c. Tính góc EOB
d. CM tam giác EFD = tam giác EOD
e. Tính góc BDE
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho tam giác ABC nhọn (AB < AC). Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. a) Chứng minh: DABC=DDBC
Cho ΔABC có AB = AC, M là trung điểm BC.
a) CM: ΔABM = ΔACM.
b) Trên tia đối MA lấy điểm D sao cho MD = MA. CM: AB song song vs CD.
c) Trên nửa mặt phẳng bờ là AC ko chứa điểm B, vẽ tia Ax song song BC, lấy điểm I ∈ Ax, sao cho AI = BC. CM: 3 điểm D, C, I thẳng hành.
cho tam giác ADC qua kẻ đường thẳng song song với CD cắt đường thẳng kẻ qua D và sông song với AC tại B gọi O là giao điểm của AD BC chứng minh AB=CD AC=BD
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
Cho tam giác ABC cân tại A, góc A = 140o. Trên nửa mặt phẳng bờ BC chứa điểm A, kẻ tia Cx sao cho góc ACx = 110o. Gọi D là giao điểm của các tia Cx và BA. Chứng minh rằng AD = BC.
Cho tam giác ABC (AB = AC) và I là trung điểm của BC. Dựng tia Cx song song với tia BA sao cho hai tia BA và Cx nằm trong hai nửa mặt phẳng đối nhau có bờ là đường thẳng BC. Lấy một điểm D trên cạnh AB. Gọi E là một điểm nằm trên tia Cx sao cho CE = BD. Câu trả lời sai là:
A.CB là tia phân giác của góc ACE
B.D;I;E thẳng hàng
C.\(\Delta\)BDI là tam giác cân
D. BE=CD