Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC. Vẽ HI và HK lần lượt vuông góc với AB, AC. Trên tia đối của tia IH, KH lần lượt lấy các điểm E và F sao cho IE = IH và KF = KH. Cho góc BAC = 45 độ, tính góc EAF.
Cho tam giác ABC có 3 góc nhọn. Kẻ AH vuông góc với BC. Vẽ HI và HK lần lượt vuông góc với AB, AC. Trên tia đối của tia IH, KH lần lượt lấy các điểm E và F sao cho IE = IH và KF = KH.
a. Chứng minh tam giác AIE = tam giác AIH
b. Chứng minh AE = AF
c. Cho góc BAC = 45 độ, tính góc EAF.
Cho tam giác ABC vuông tại A có AB= AC. Gọi H là trung điểm của cạnh BC. a. Chứng minh ΔAHB= ΔAHC b, Chứng minh rằng AH vuông góc với BC c. Tính số đo góc BHA và BCA? d. Trên tia đối của tia AH lấy điểm E sao cho AE = BC, Trên tia đối của tia CA lấy điểm F sao cho CF = AB. Tính góc EBF
VẼ HÌNH CHO MÌNH LUÔN NHA! CẢM ƠN MỌI NGƯỜI!
Cho tam giác ABC vuông ở A. Trên tia đối của tia BA và tia đối của tia BC lần lượt lấy các điểm E và F sao cho B là trung điểm của AE và CF
a) CMR: EF vuông góc với EA
b) CMR: AF=CE ; AF//CE
c) Gọi H và K lần lượt là trung điểm của CE và AF.
CMR: Ba điểm H,B,K thẳng hàng.
Mọi người giúp mk nhé mai mk phải nộp rồi
Bài 3: Cho tam giác ABC vuông tại A , kẻ AI vuông góc với BC, trên cạnh AB lấy điểm E sao cho AI = AE, tia phân giác của góc EAI cắt EI và BC lần lượt tại K và D.
a) Vẽ hình,ghi giả thiết – kết luận của bài toán
b) Chứng minh KE =KI
giúp với
c) Chứng minh ED // AC
Cho △ABC có AB = 3cm, AC = 4cm, BC = 5cm. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH vuông góc AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a)∆ABC là tam giác vuông.
b) AB //HK
c) △AKI cân
d) BAK = AIK
e) △AIC = △AKC
Bài 12: Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi H, K lần lượt là trung điểm của AD, BC. Trung trực AD, BC cắt nhau tại I. Vẽ IE vuông góc với AB tại E.
a) Chứng minh : IB = IC; IA = ID.
b) Chứng minh: và AI là phân giác của góc BAC.
c) Chứng minh: BE = HC và AI là đường trung trực của đoạn thẳng EH.
d) Từ C kẻ đường thẳng song song với AB, cắt đường thẳng EH tại F. Chứng minh: và E, K, F thẳng hàng.