Cho tam giác ABC có 3 góc nhọn (AB<BC,AC) nội tiếp (O). Kẻ các đường cao BD,CE cắt nhau tại H (D thuộc AC, E thuộc AB)
a, Chứng minh BCDE là tứ giác nội tiếp
b, Chứng minh DA.DC= DH.DB
c, Vẽ đường tròn tâm H, bán kính HA cắt các tia AB, AC lần lượt tại M,N. Chứng minh OA vuông góc với MN.
d, Các tiếp tuyến tại M,N của (H,HA) cắt nhau tại P. Chứng minh AP đi qua trung điểm của BC.
a: Xét tứ giác BCDE có \(\widehat{BEC}=\widehat{BDC}=90^0\)
nên BCDE là tứ giác nội tiếp
b: Xét ΔDHC vuông tại D và ΔDAB vuông tại D có
\(\widehat{HCD}=\widehat{ABD}\)
Do đó: ΔDHC\(\sim\)ΔDAB
Suy ra: DH/DA=DC/DB
hay \(DH\cdot DB=DA\cdot DC\)