Cho tam giác ABC không cân. Đường tròn tâm I nội tiếp tam giác , tiếp xúc với các cạnh BC, CA, AB lần lượt tại A', B', C' . Đường thằng B'C' cắt BC tại D. Chứng minh ID vuông góc với AA'
gọi H là trực tâm của tam giác không vuông ABC . Chứng minh rằng bán kính các đường tròn ngoại tiếp các tam giác ABC , HBC . HCA . HAB bằng nhau
.Cho tam giác ABC có A(4;3) , B(0; 5) , C(6; 2) .
a) Chứng minh :ABC vuông tại B . Tính diện tích tam giác ABC.
b) Tìm tọa độ điểm K là chân đường cao kẻ từ B của tam giác ABC.
c) Tìm tọa độ điểm I là tâm đường tròn ngoại tiếp tam giác ABC.
d) Tìm tọa độ điểm J là tâm đường tròn nội tiếp tam giác ABC.
cho tam giác ABC với 3 đường trung tuyến AD , BE , CF . Chứng minh rằng : vector BC nhân vector AD + vector CA nhân vector BE + vector AB nhân vector CF = 0
cho tam giác ABC . Chứng minh rằng : a) cot A = b2 + c2 - a2 / 4S ( S là diện tích tam giác ABC ) ; b) cot A + cot B + cot C = a2 + b2 + c2 / 4S
/ nghĩa là phân số
chứng minh rằng điều kiện cần và đủ để tam giác ABC vuông tại A là : vector BA nhân vector BC = AB2
a) Tính GTLN của : \(\frac{\left(x^2+2x+3\right)\left(x^2+2x+9\right)}{x^2+2x+1}\)
b) Cho tam giác cân có cạnh đáy là 24, cạnh bên là 20. Tính độ dài đường cao ứng với cạnh bên của tam giác trên
c) Cho tam giác ABC có AB = 48, AC = 14, BC = 50. Tính độ dài đường trung tuyến AM của tam giác
cho mặt phẳng Oxy cho tam giác ABC biết A(1,-3) , B(3,-5) , C(2,-2) : a) tìm M trên Ox sao cho tam giác ABM cân tại M ; b) tìm N trên Oy sao cho tam giác ABN vuông tại A
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2