cho tam giác ABC với 3 đường trung tuyến AD , BE , CF . Chứng minh rằng : vector BC nhân vector AD + vector CA nhân vector BE + vector AB nhân vector CF = 0
cho 4 điểm bất kỳ A , B , C ,D .Chứng minh rằng : vector DA nhân vector BC + vector DB nhân vector CA + vector DC nhân vector AB = 0 . Từ đó suy ra một cách chứng minh định lý : '' 3 đường cao của một tam giác đồng quy''
cho 2 điểm M , N nằm trên đường tròn đường kính AB = 2R . Gọi I là giao điểm của 2 đường thẳng AM và BN : a) chứng minh rằng : vector AM nhân AI = vector AB nhân vector AI ; vector BN nhân vector BI = vector BA nhân vector BI ; b) tính vector AM nhân vector AI + vector BA nhân vector BI theo R
cho 4 điểm bất kỳ A , B , C ,D .Chứng minh rằng : vector DA nhân vector BC + vector DB nhân vector CA + vector DC nhân vector AB = 0
cho tam giác ABC . Chứng minh rằng điều kiện cần và đủ để 2 trung tuyến kẻ từ B và C vuông góc với nhau là : b2 + c2 = 5a2
cho 2 đường thẳng a và b cắt nhau tại M . Trên a có 2 điểm A và B , trên b có 2 điểm C và D đều khác M sao cho vector MA nhân vector MB = vector MC nhân vector MD . Chứng minh rằng 4 đỉnh A , B , C , D cùng nằm trên 1 đường tròn
Trong mặt phẳng toạ độ Oxy cho tam giác ABC có : A(3,1) B(5,3) C(-1,1)
a) chứng tỏ tam giác ABC vuông cân
b) Tìm toạ độ của điểm M biết vecto MA - 2 vecto MB + 4 vecto MC = vector 0
c) tính diện tích tam giác ABC
d) Tìm N thuộc Oy để NB + NC nhỏ nhất
cho tam giác ABC. chứng minh điều kiện cần và đủ để hai trung tuyến BM và CN vuông góc với nhau là b^2+ c^2 = 5a^2
Cho tam giác ABC không cân. Đường tròn tâm I nội tiếp tam giác , tiếp xúc với các cạnh BC, CA, AB lần lượt tại A', B', C' . Đường thằng B'C' cắt BC tại D. Chứng minh ID vuông góc với AA'