Cho tam giác ABC cân tại A, góc A=80 độ. Trên cạnh BC lấy điểm I sao cho góc BAI= 50 độ, trên cạnh AC lấy điểm K sao cho góc ABK= 30 độ. Hai đoạn thảng AI và BK cắt nhau tại H. Chưng minh rằng tam HIK cân
Cho tam giác ABC vuông tại A có góc bằng 60 độ, trên cạnh BC lấy điểm D sao cho CAD bằng 30 độ.
a) C/m các tam giác ACD và tam giác ABD là tam giác cân
b) C/m D là trung điểm của BC
c) vẽ DI thẳng góc AC tại I. C/m IA = IC
d) Trên tia đối của ID lấy K sao cho I là trung điểm DK. C/m AK song song DC và AK = CD
e) C/m AB = DK suy ra AB = 2.DI
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
Cho tam giác ABC, có góc A=120 độ. Hai tia phân giác BD và CE của tam giác cắt nhau tại O. Trên cạnh BC lấy 2 điểm I và K sao cho góc IOB = góc KOC = 30 độ. Chứng minh rằng:
a) OI vuông góc OK
b) BE+CD<BC
cho tam giác ABC cân , có góc A = 45 độ , AB = AC từ chung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M . trên tia đối của tia AM lấy điểm N sao cho AN = BM . CMR
a] góc AMC = góc ABC
b] tam giác ABM = tam giác CAN
c] tam giác MNC la giác CÂN ở C
1. Cho tam giác ABC có góc B=50 độ. Từ A kẻ đường thẳng \\ vs BC cắt tia p/g của góc B ở E.
a) CM: ΔAEB là tam giác cân.
b) Tính góc BAE
2. cho tam giác ABC cân tại A. Trên cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD= AE. Gọi M là trung điểm của BC. CMR:
a) DE\\BC
b) ΔMBD=ΔMCE
c)ΔAMD=ΔAME.
3.Cho tam giác ABC cân tại A. Gọi Am là tia phân giác góc ngoài tại đỉnh A của tam giác đó. CM Am\\BC.
4. Cho tam giác đều ABC. Trên tia đối của các tia AB,BC,CA lấy theo thứ tự ba điểm D,E,F sao cho AD=BE=CF. CM ΔDEF là tam giác đều.
( GIÚP MÌNH VỚI NHÉ!!! VẼ HÌNH VÀ TRÌNH BÀY CHI TIẾT NHÉ! MÌNH ĐANG CẦN GẤP! THANKS!!! ^_^)
Cho tam giác ABC cân tại A có \(\widehat{A}=80^0\). Trên BC lấy điểm I sao cho \(\widehat{BAI}=50^0\). Trên AC lấy điểm K sao cho \(\widehat{ABK}=30^0\). 2 đoạn AI và BC cắt nhau tại H. CMR: \(\Delta HIK\) cân.
1. Cho tam giác ABC có AB > AC, tia phân giác của góc BAC cắt BC tại D. So sánh CD và BD.
2. Cho tam giác ABC cân tại A. Trên cạnh đáy BC lấy các điểm D, E sao cho BD = DE = EC. So sánh góc BAD và góc DAE.
Bài 1: Cho tam giác ABC có góc B=50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E.
a/ CM: Tam giác ABC cân.
b/ Tính góc BAE.
Bài 2: Cho tam giác cân ABC (AB=AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE. Gọi M là trung điểm của BC. CMR:
a/ DE song song BC
b/ Tam giác MBD=tam giác MCE
c/ Tam giác AMD=tam giác AME