Bài 1:Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M , trên tia đối của tia CA lấy điểm N sao cho AM+AN=2AB . Gọi I là trung điểm của đoạn thẳng MN. Chứng minh rằng ba điểm thẳng hàng B,I,C thẳng hàng
Cho tam giác ABC(AB>AC) . Qua trung điểm M của cạnh BC kẻ đường vuông góc với phân giác trong của góc A , nó cắt các cạnh AB,AC lần lượt tại D và E, biết , AD = b ,CE = c. Tính độ dài đoạn AD,CE theo b và c
Cho tam giác ABC cân tại góc A gọi M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho DM = BM a)tam giác BMC=tam giác DMA b) chứng minh tam giác ACD cân c) trên tia đối của tia CA lấy điểm E sao cho CA=CE . Chứng minh DC đi qua trung điểm K của BE
Cho tam giác ABC cân tại A có góc BAC = 50 độ Trên tia đối của tia BC lấy điểm D trên tia đối của tia CB lấy điểm E sao cho BD = BA CE = CA Tính góc DAE
Cho tam giác ABC cân tại A. Lấy I là trung điểm BC. Trên tia đối của CB lấy điểm N, trên tia đối của BC lấy điểm M sao cho CN=BM.
a) Chứng minh: AI là tia phân giác góc BAC;
b) Chứng minh AM=AN;
c) Qua B vẽ đường thẳng vuông góc với AB cắt tia AI tại K. Chứng minh KC vuông góc AC.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh rằng tam giác ADE là tam giác cân ?
cho tam giác abc cân tại a.trên cạnh ab lấy điểm d.trên tia đối của tia ca lấy e sao cho bd=ce.de cắt bc tại i trên tia đối của bc lấy k sao cho bk=ci a) chưngs minh dbk=eci.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC