Bài 3: Hình thang cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chanhh

 Cho tam giác ABC cân tại A. kẻ phân giác BE, CF của các góc B và C.

a) Chứng minh tam giác AEF cân

b) Chứng minh △BFC = △CEB

c) Chứng minh BFEC là hình thang cân

Nguyễn Hoàng Minh
20 tháng 9 2021 lúc 8:18

\(a,\left\{{}\begin{matrix}\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC};\widehat{C_1}=\widehat{C_2}=\dfrac{1}{2}\widehat{ACB}\\\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân.tại.A\right)\end{matrix}\right.\Rightarrow\widehat{B_1}=\widehat{B_2}=\widehat{C_1}=\widehat{C_2}\\ \left\{{}\begin{matrix}\widehat{B_1}=\widehat{C_1}\\AB=AC\\\widehat{A}\end{matrix}\right.\Rightarrow\Delta AEB=\Delta AFC\left(g.c.g\right)\Rightarrow AE=AF\\ \Rightarrow\Delta AEF.cân\)

\(b,\left\{{}\begin{matrix}AE=AF\\AB=AC\end{matrix}\right.\Rightarrow AB-AF=AC-AE\Rightarrow BF=CE\\ \left\{{}\begin{matrix}BF=CE\\\widehat{ABC}=\widehat{ACB}\\BC.chung\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(c.g.c\right)\)

\(c,\widehat{AFE}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{AFE}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BFCE\) là hthang

Mà \(\widehat{ABC}=\widehat{ACB}\) nên BFCE là hthang cân


Các câu hỏi tương tự
Chanhh
Xem chi tiết
Huyy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
quyen nang nang
Xem chi tiết
Chung Tran
Xem chi tiết
Lê Nữ Ái Phương
Xem chi tiết
Hải Vân
Xem chi tiết
Ngoc Do
Xem chi tiết
Vy Do
Xem chi tiết