=> \(ED\) // \(BC\left(đpcm\right).\)
Chúc bạn học tốt!
=> \(ED\) // \(BC\left(đpcm\right).\)
Chúc bạn học tốt!
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho tam giác ABC vuông tại A.Tia phân giác góc ABC cắt AC tại D.Trên cạnh BC, lấy điểm E sao cho BE=BA a) Chứng minh tam giác ABD=tam giác EBD b) Chứng minh BD vuông góc với AE tại H c) Qua A; kẻ đường thẳng song song với BD cắt ED tại K.Chứng minh Tam giác ADK cân và từ đó suy ra D là trung điểm của EK d) Chứng minh KE < 2AB
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Cho tam giác ABC vuông tại C biết AB = 13 cm AC = 5 cm. Tia phân giác của góc A cắt cạnh BC tại E. kẻ EK vuông góc với AB tại K a, Tính BC. Chứng minh tam giác ACE bằng tam giác AKE b, so sánh CE và BE c, Kẻ CH vuông góc với AB tại H. Chứng mình CK là tia phân giác của góc HCB Cho mình câu trả lời nhanh với ạ
ho tam giác abc vuông tại a, có góc acb = 30 độ, đường vuông góc kẻ từ a cắt bc tại h. trên đoạn hc lấy điểm d sao cho hd=hb câu a/ chứng minh tam giác ahb=tam giác ahd câu b/ chứng minh tam giác abd là tam giác đều câu c/ từ c kẻ ce vuông góc với ad, (e thuộc ad). chứng minh de=hb câu d/ kẻ df vuông góc với ac, (f thuộc ac); gọi i là giao điểm của ce và ah. chứng minh: i, d, f thẳng hàng.
Cho tam giác ABC vuông tại A (AB<AC) , O là trung điểm của BC , trên tia đối của tia OA lấy điểm K sao cho OA = OK . Vẽ AH vuông góc với BC tại H . Trên tia HC lấy HD = HA . Đường vuông góc với BC tại D cắt AC tại E .
1. Chứng minh tam giác ABC và tam giác CKA bằng nhau
2. Chứng minh AB = AE
3. Gọi M là trung điểm của BE . Tính số đo góc CHM
cho tam giác abc vuông tạ a . Đường phân giác của góc b cắt ac tại d dh vuông góc với bc .
a. Chứng minh tam giác abd bằng tam giác hbd
b. dk cắt ab tại k . Chứng minh tam giác kdc cân
cho tam giác ABC cân tại A. Trên cạnh BC lấy D (D không trùng B và BD<BC/2 ). trên tia đói của tia CB lấy E sao cho BD=CE, các đường vuông góc với BC kẻ từ D và E cắt đường thẳng AB và AC lần lượt tại M và N.
1) cm : DM=EN.
2) gọi I là giao điểm của MN và BC,CM : ME//DN.
3) gọi K là trung điểm BC. Kẻ đường thẳng vuông góc với MN tại I cắt đường thẳng AK tại O. CM: 1/CK^2 - 1/OC^2 = 1/AC^2
Cho tam giác ABC vuông tại A, có đường phân giác BD. Kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh rằng:
a) △ABD = △EBD
b) △CDF là tam giác cân
c) E, D, F thẳng hàng và BD ⊥ CF
d) 2(ad+af)>cf