Bài 6: Tam giác cân

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Quách Tâm Nhân

Cho tam giác ABC cân tại A 

Kẻ AH vuông góc với BC,H thuộc BC 

1/Cm:HB=HC

2/Biết AB=13cm,BC=10cm

Tính diện tích Tam Giác ABC

£€Nguyễn -.- Nguyệt ™Ánh...
11 tháng 2 2021 lúc 10:31

 1 : 

xét tam giác ABC ta có 

  AB=AC ( định lí /giả thiết )

góc BAH= góc CAH ( hai góc tương ứng )

  AH ( cạnh chung)

2: diện tích tam giác ABC là :

 13+10+13 =36 (cm vuông)

 

 

Nguyễn Trọng Chiến
11 tháng 2 2021 lúc 16:07

1. Ta có \(\Delta ABC\) cân tại A  \(\Rightarrow\) AH là đường cao đồng thời là đường trung tuyến của cạnh BC \(\Rightarrow HB=HC=\dfrac{1}{2}BC\)

2. Từ câu a ta có : \(HB=HC=\dfrac{1}{2}BC\Rightarrow HB=HC=\dfrac{1}{2}\cdot10=5cm\)

Áp dụng định lí Pytago vào \(\Delta AHB\) vuông tại H có :

\(\Rightarrow HB^2+AH^2=BA^2\) \(\Rightarrow AH^2=AB^2-HB^2=13^2-5^2=169-25=144=12^2\) \(\Rightarrow AH=12cm\) 

\(\Rightarrow S_{\Delta ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot5\cdot10=25cm^2\)

Nguyễn Lê Phước Thịnh
11 tháng 2 2021 lúc 19:17

1) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: HB=HC(hai cạnh tương ứng)

2) Ta có: HB=HC(cmt)

mà HB+HC=BC(H nằm giữa B và C)

nên \(HB=HC=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=AB^2-HB^2=13^2-5^2=144\)

hay AH=12(cm)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)


Các câu hỏi tương tự
Quyên Kiều
Xem chi tiết
Hồ Minh
Xem chi tiết
Giang An
Xem chi tiết
♡RESERVED♡
Xem chi tiết
Mai Vĩnh Nam Lê
Xem chi tiết
Cấn Thị Thảo My
Xem chi tiết
Quỳnh Như
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết
phamquocdat
Xem chi tiết