a) MN la duong trung binh tam giac ABC =>MN=AB/2.
Ma AB=AC=>AB/2=AC/2=AN
=>AN=MN=>Tam giac AMN can tai N.
b) De bai sai
a) MN la duong trung binh tam giac ABC =>MN=AB/2.
Ma AB=AC=>AB/2=AC/2=AN
=>AN=MN=>Tam giac AMN can tai N.
b) De bai sai
Cho tam giác ABC cân tại A. Đường trung tuyến AM, BN. Chứng minh :
a) Tam giác AMN cân.
b) Tứ giác BNMC là hình thang cân.
Cho tam giác ABC cân tại A.Vẽ đường phân giác BE và CF
A,Chứng minh tam giác ABE=tam giác ACF
B,Tứ giác BCEF là hình thang cân
C,Chứng minh EF=EC
Bài 1:
cho tam giác ABC cân tại A các đường cao BE vàCF chứng minh rằng tứ giác BFEC là hình thang cân ?
Bài 2 :
Chứng minh rằng : tứ giác ABCD có góc D = góc C và AD = BC thì tứ giác đí là hònh thang cân ?
Cho tam giác ABC cân tại A. Gọi E,F và D là trung điểm của AB, BC,AC. Chứng minh:
a, Tứ giác BCDE là hình thang cân
b, Tứ giác BEDF là hình bình hành
c, Tứ giác ADFE là hình thoi
Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM=\(\frac{1}{2}\)BC, N là trung điểm cạnh AB. Chứng minh:
a) Tam giác AMB cân
b) Tứ giác MNAC là hình thang vuông
Cho tam giác ABC cân tại A. Các đường phân giác BE và CF. Chứng minh :
a) góc ABE = góc ACF
b) ∆AFE cân
c) Tứ giác BFEC là hình thang cân có đáy nhỏ bằng cạnh bên.
Giúp mình với,giải chi tiết cho mình nha!
Bài 2: Cho hình thang ABCD (AB//CD).Gọi E,F lần lượt là trung điểm của AD và BC. Gọi K là giao điểm của AC và EF
a. CM: AK = KC.
b. Biết AB = 4cm, CD = 10cm. Tính các độ dài EK, KF
Bài 3. Cho tam giác ABC. Gọi D, M, E theo thứ tự là trung điểm của AB, BC, CA.
a. CM: Tứ giác ADME là hình bình hành.
b. Nếu tam giác ABC cân tại A thì tứ giác ADME là hình gì? Vì sao?
c. Nếu tam giác ABC vuông tại A thì tứ giác ADME là hình gì? Vì sao?
d. Trong trường hợp tam giác ABC vuông tại A, cho biết AB = 6cm, AC = 8cm, tính độ
dài AM.
Bài 4: Cho hình bình hành ABCD có AD = 2AB, Ẩ = 60°. Gọi E và F lần lượt là trung
điểm của BC và AD.
a. Chứng minh AE vuông góc BF
b. Chứng minh tứ giác BFDC là hình thang cân.
c. Lấy điểm M đối xứng của A qua B. Chứng minh tứ giác BMCD là hình chữ nhật.
d. Chứng minh M, E, D thẳng hàng.
Bài 5: Cho tam giác ABC vuông tại A có góc ABC= 60°, kẻ tia Ax song song với BC.
Trên Ax lấy điểm D sao cho AD = DC.
a. Tính các góc BAD và DAC.
b. Chứng minh tứ giác ABCD là hình thang cân.
c. Gọi E là trung điểm của BC. Chứng minh tứ giác ADEB là hình thoi.
d. Cho AC = 8cm, AB = 5cm. Tính diện tích hình thoi ABED
Cho tam giác MNQ cân tại M đường trung tuyến MP , gọi I là trung điểm của MQ , K là điểm đối xứng của p qua I : a. Chứng minh tứ giác MPQK là hình chữ nhật b. Điều kiện để tứ giác mkqp là hình vuông
cho tam giác ABC cân tại A . Trung tuyến AM gọi I Ià trung điểm của AC , K là điểm đối xứng với M qua I .
a, tứ giác AMCK là hình gì ? Tại sao ?
b, tứ giác AKMB cũng là hình j? tại sao?
c, Có trường hợp nào của tam giac ABC để tứ giác AKMB là hình thoi hay không