a) Xét \(\Delta\) DHM và \(\Delta\) DMC:
\(\widehat{MDH}chung.\)
\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)
b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)
\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow DH.MC=DM.HM.\)
Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).
\(\Rightarrow DH.BM=AD.HM.\)
c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).
\(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)
\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)
Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)
Xét \(\Delta\) ADH và \(\Delta\) BMH:
\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)
\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)
\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).
Xét \(\Delta\) AMN và \(\Delta\) BHN:
\(\widehat{N}chung.\)
\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)
\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)
\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).
Xét \(\Delta\) ABN:
AM là đường cao \(\left(AM\perp BC\right).\)
BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)
AM cắt BH tại E (gt).
\(\Rightarrow\) E là trực tâm.
\(\Rightarrow\) EN là đường cao.
\(\Rightarrow EN\perp AB.\)