a) Xét ΔDAB và ΔDAC có:
- AB = AC (ΔABC cân tại A)
- AD là cạnh chung
- DB = DC (ΔDBC đều)
⇒ ΔDAB = ΔDAC (c - c - c)
⇒ ∠BAD = ∠CAD (hai góc tương ứng)
Mà AD nằm giữa AB và AC
⇒ AD là tia phân giác của góc BAC
a) Xét ΔDAB và ΔDAC có:
- AB = AC (ΔABC cân tại A)
- AD là cạnh chung
- DB = DC (ΔDBC đều)
⇒ ΔDAB = ΔDAC (c - c - c)
⇒ ∠BAD = ∠CAD (hai góc tương ứng)
Mà AD nằm giữa AB và AC
⇒ AD là tia phân giác của góc BAC
Cho tam giác aBC vuông tại A , Có góc C =30' . tia phân giác của góc B cắt tại AC tại D . Vẽ DE vuông góc với BC tại E . Qua điểm C vẽ đường thẳng vuông góc với tia BD tại H .
a. Chứng minh : tam giác ABD= tam giác EBD
b. Tính góc DBC và chứng minh : DB=DC
c. So Sánh : HC và HD
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
cho tam giác ABC cân tại A ,Tia phân giác của góc BAC cắt cạnh BC tại M .
a) chứng minh tam giác AMB =tam giác AMC
b)Vẽ ME vuông góc với AB ( E thuộc AB);MF vuông góc với AC(F thuộc AC) .Chứng minh tam giác MEF cân
c) Chứng minh AM vuông góc với EF
d) Vẽ EI vuông góc BC tại I.Gọi K là giao điểm của đường thẳng EI và AC. chứng minh A là trung điểm của KF
Cho tam giác ABC có AB =AC, M là trung điểm của BC a) Chứng minh AM là tia phân giác của góc BAC b) AM vuông góc với BC c) Từ C kẻ đường thẳng song song với AB, cắt AM tại D. Chứng minh tam giác ADC cân
Câu 6: Cho tam giác ABC vuông tại A, có B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh:tam giác ABD = tam giác EBD.
b/ Chứng minh: tam giácABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho tam giác ABC vuông tại B ,Vẽ AD là tia phân giác góc BAC (D thuộc BC).Từ D kẻ De vuông góc AC (E thuộc AC).Gọi F là giao điểm của tia DE và AB .a)Chứng minh :tam giác ABE là tam giác cân.b)Tam giác ADF=Tam giác ADC.c) Chứng minh BA+BC>DE+AC
Bài 10. Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a) Chứng minh: ABD = EBD.
b) Chứng minh: ABE là tam giác đều.
c) Tính độ dài cạnh BC.
Cho tam giác ABC cân tại A ( Tia phân giác của góc A cắt cạnh BC tại M Từ M kẻ MH và MK .
a) Chứng minh: Tam giác AMB = tam giác AMC
b) Chứng minh: AM vuông góc BC
Cho tam giác ABC vuông tại A, có AB=3cm, AC=4cm
a) Tính độ dài BC
b) Tia phân giác của B cắt cạnh AC tại D. Từ D vẽ DE vuông với BC ( E thuộc BC ). Chứng minh tam giác ABD=tam giác EBD
c) Tia ED cắt tia BA tại I. Chứng minh tam giác IDC cân
cho tam giác ABC có AB<BC.Tia phân giác của góc BAC cắt BC tại D.Trên cạnh AC lấy điểm M sao cho AM=AB
a,Chứng minh tam giác ABD=tam giác AMD
b,Chứng minh DB=DM và góc ABD=góc AMD
c, kéo dài AB và MD cắt nhau tại N. Chứng minh tam giác BDM= tam giác MDC
d,chứng minh AD vuông góc BM và BM song song NC