Cho tam giác ABC đều, O là trung điểm của BC. M và N là các điểm trên AB và AC sao cho góc MON=60 độ. CM:
a) Tam giác OBM đồng dạng với tam giác NCO.
b) Tam giác OBM đồng dạng với tam giác NOM; MO là phân giác của góc BMN
c) O cách đều 3 cạnh AB, AC, MN
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC cân tại A với góc A = 108o. Vẽ các tia phân giác AD và BE (D thuộc BC ; E thuộc AC). Biết BE = 10 cm. Tính AD
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho tam giác ABC cân tại A có góc A = 108 độ. Các đường phân giác AD và BE của các góc A và B tương ứng. Biết BE = 10 cm. Tính AD
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
Cho tam giác ABC vuông tại A , đường cao AH .Gọi D,E lần lượt là các chân đường vuông góc hạ từ H xuống AB và AC. GỌI M là trung điểm HC
a)c/m Tứ giác ADHE là hình chữ nhật
b)c/m góc MHE= góc MEH
c) CM tam giác DEM vuông
Giiusp mình với plsss
Cho tam giác ABC cân tại A , có đường ccao AH . Gọi M là trung điểm của AB , E là điểm đối xứng với H qua M
a ) Chứng minh tứ giác AHBE là hình chữ nhật
b Gọi N là trung điểm của AH . Chứng minh E , N , C thẳng hàng
c ) Cho AH = 8cm , BC =12 cm . Tính diện tích tam giác AMH
d ) Trên tia đối của tia HA lấy điểm F . Kẻ \(HK\perp FC\left(K\in FC\right)\). Gọi I , Q lần luwowtj là trung điểm của H K cà KC . CM : BK vuông góc với FI
(Các bạn chỉ cần làm ý c và d cho mk thôi!)
Cho tam giác ABC có 3 góc nhọn, trực tâm H. Qua B vẽ đường thẳng vuông góc với AB, qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại D
a) CM: tứ giác BHCD là hình bình hành
b) Gọi M là trung điểm BC, O là trung điểm AD. CM: M là trung điểm của HD và AH=2OM
c) Tìm điều kiện của tam giác ABC để tứ giác BHCD là hình chữ nhật
d) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm H, G, O thẳng hàng