Lời giải:
Gọi $H$ là chân đường cao kẻ từ $A$. Vì $ABC$ cân tại $A$ nên $H$ là trung điểm $BC$
Ta có:
\(S_{ABC}=\frac{AH.BC}{2}=\frac{h_C.AB}{2}\)
\(\Rightarrow BC=\frac{h_C.AB}{AH}=\frac{12AB}{15,6}=\frac{10}{13}AB\)
\(\Rightarrow BH=\frac{5}{13}AB\)
Áp dụng định lý Pitago:
$AH^2=AB^2-BH^2=AB^2-(\frac{5}{13}AB)^2$
$\Leftrightarrow 15,6^2=\frac{144}{169}AB^2$
$\Rightarrow AB=16,9$
$\Rightarrow BC=\frac{10}{13}AB=13$ (cm)