Nguyễn Huy Tú,Akai Haruma,Nguyễn Thanh Hằng,Mysterious Person, giúp em vs em đag cần gấp
Nguyễn Huy Tú,Akai Haruma,Nguyễn Thanh Hằng,Mysterious Person, giúp em vs em đag cần gấp
Cho Tam giác ABC vuông tại A, có AB=12cm ; AC=16cm. Kẻ đường cao AH (H∈BC).
a) Chứng minh: Tam giác HBA đồng dạng với Tam giác ABC
b)Chứng minh: \(AB^2\)=HB.BC, tính HB
c)Trên cạnh AC lấy điểm D, trên nửa mặt phẳng bờ BC không chứa điểm A xác định điểm E sao cho CDBE là hình bình hành, qua B kẻ đường vuông góc với tia CE tại F. Chứng minh rằng:CD.CA+BD.CF=\(BC^2\)
Cho tam giác ABC, AB = 4,8 cm; BC = 3,6 cm; AC = 6,4 cm. Trên cạnh AB lấy điểm E sao cho AE = 2,4 cm, trên cạnh AC lấy điểm D sao cho AD = 3,2 cm. Gọi giao điểm của ED và CB là F.
a, C/m tam giác ABC đồng dạng với tam giác AFD
c, tính FD
?
cho tam giác ABC vuông tại A (AC>AB),đường cao AH.Trên tia HC lấy điểm D sao cho HD=AH.Qua D kẻ đường thẳng vuông góc với BC,cắt cạnh AC tại E.a)Chứng minh tam giác ABC đồng dạng tam giác HAC;b)Chứng minh EC.AC=DC.BC;c)Chứng minh tam giác BEC đồng dạng tam giác ADC và tam giác ABE vuông cân
Cho tam giác ABC(AB=AC). O là trung điểm cảu BC. Kẻ OD ( D thuộc AB0 và OE ( E thuộc AC) sao cho góc BOD = OEC.
a. Chứng minh: tam gíac OBD đồng dạng tam giác ECO từ đó suy ra OB2 = EC.BD
b. Chứng minh: DOE có số đo ko đổi
c. Chứng minh tam giác EOD đồng dạng tam giác OBD
cho tam giác ABC vuông tại A (AC>AB). vẽ đường cao AH. trên tia đối của tia BC lấy điểm K sao cho KH=HA. qua K kẻ đường thẳng song song với AH, cắt đường thẳng AC tại P.
a,chứng minh tam giác AKC đồng dạng với tam giác BPC
b, gọi Q là trung điểm của BP. Chứng minh tam giác BHQ đồng dạng với tam giác BPC
c, tia AQ cắt BC tại I. chứng minh AH/HB - BC/IB = 1
Cho tam giác ABc có AB=6cm; AC=7,5 , BC=9cm . Trên tia đối của tioa AB lấy điểm D sao cho AD=AC . Chứng minh tam giác ABC đồng dạng với tam giác CBD
( Khỏi vẽ hình )
Cho tam giác ABC có AB = 6cm, AC = 9cm. Trên cạnh AB lấy M sao cho AM = 4,5cm, trên cạnh AC lấy N sao cho AN = 3cm.
a) So sánh các tỉ số AN/AB và AM/AC. Chứng minh : Tam giác ANM đồng dạng tam giác ABC.
b) Kẻ MK // BC (K thuộc AC). Tính CK và NK.
c) Trên cạnh BC lấy điểm J sao cho BC = 3CJ, trên cạnh MN lấy điểm I sao cho 3MI = MN. Chứng minh : tam giác AMI đồng dạng tam giác ACJ.
d) Vẽ điểm F sao cho A là trung điểm của FB. Gọi AD, AE lần lượt là đường phân giác của tam giác ABC, tam giác AFC (D thuộc BC, E thuộc FC). Chứng minh : ED // FB
cho tam giác ABC. Từ điểm D bất kì trên cạnh BC a dựng đường thẳng d song song với trung tuyến AM; d cắt AB ở E, cắt AC ở F. Chứng minh rằng :
a) AE.AC=AF.AB
b) DE+DF=2AM
cho tam giác abc vuông tại a ( ab < ac ) lấy điểm i nằm trên ab kẻ bd vuông góc ci tại d. a) chứng minh tam giác aic đồng dạng tam giác dib. b) chứng minh góc abc = góc adc. c) giả sử ic là phân giác của tam giác abc. chứng minh da = db