Cho tam giác ABC, các đường trung tuyến BD và CE gặp nhau tại G. Gọi I, K lần lượt là trung điểm của BG và CG.
a. Chứng minh IK//DE và IK=DE.
b. Đường thẳng IK cắt AB, AC lần lượt tại M, N. Qua G vẽ đường thẳng song song với BC cắt AB, AC lần lượt tại P, Q.
Chứng minh DE=3MI và MI=KN, PG=GQ.
Câu 1. cho tứ giác ABCD gọi E,F,I thứ tự là trung điểm của AD,BC,AC . Chứng minh
a) EI//CD , IF // AB b) 2EF<=AB+CD
Câu 2. cho tam giác ABC, các trung tuyến BD và CE gặp nhau tại G . Gọi I và K lần lượt là trung điểm của BG,CG
a) chứng minh IK // DE và IK=DE
b) đường thẳng IK cắt AB,AC tại M và N. Qua G vẽ đường thẳng song song với BC cắt AB và AC lần lượt ở P và Q. chứng minh:DE=3MI,MI=KN,PG=GQ
Câu 3. cho hình thangABCD (AB // CD và AB<CD). Gọi E và F lần lượt là trung điểm của AC và BD. Đường thẳng EF cắt BD,AC lần lượt ở I và K
a) chứng minh: IK=\(\frac{CD-AB}{2}\)
b) cho AB=4cm,CD=7CM. Tính EI,KF,IK
Mình đang cần gấp, mong các bạn giải giúp mk,mọi người trình bày lời giải để mk hiểu nhé! THANK
Cho tam giác ABC có 2 đường trung tuyến BD và CE cắt nhau tại G . Gọi I và K lần lượt là trung điểm của GB và GC cm rằng: A) DE//IK và DE=IK B) tam giác GED=tam giác GKI C) GE=1/3 CE
Tam giác ABC, các đường trung tuyến BD, CE cắt nhau tại G. Gọi I và K lần lượt là trung điểm của GB, GC. Chứng minnh rằng IK =ED và IK //ED
Cho ∆ABC, AH là đường cao. Qua trung điểm I của BH và trung điểm K của CH dựng các đường thẳng vuông góc với BC, lần lượt cắt AB, AC tại D và E. Chứng minh a) ID // KE và ID = KE b) DE // IK và DE = IK
Cho tam giác ABC cân tại A có M, N lần lượt là trung điểm của AB, BC. Qua N kẻ đường thẳng song song với AB và cắt AC tại K. a) Chứng minh NK = 1/2 AB b) Chứng minh tam giác MNK cân tại N
Bài 7: Cho ∆ABC cân tại A, 2 đường trung tuyến BD và CE cắt nhau tại G. Gọi M, N lần lượt là trung điểm của BG và CG. I và K lần lượt là trung điểm của GM, GN
a) Tứ giác IEDK là hình gì?
b. Nếu BC=10cm. Tính DE + IK
Cho hình thang ABCD có AB song song CD (AB<CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E, F.
a) CM: N, E, F lần lượt là trung điểm của BC, BD, AC
b) Gọi I là trung điểm của AB. Đường thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. CM: KC=KD
Bài 1: Cho tam giác ABC có đường truyến BD và CE cắt nhau tại G. Gọi I, K là trung điểm GB, GC. Chứng minh DE// IK và DE = IK.
Bài 2: Cho tam giác ABC có đường trung tuyến BD và CE. Gọi M, N là trung điểm BE, CD. Gọi MN cắt BD tại I và MN cắt CE tại I. Chứng minh MI = IK = KN.