a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE/AB=CD/CB=1/2
=>DE=AF và DE//AF
=>DK//AF và DK=AF
=>ADKF là hình bình hành
a: Xét ΔCAB có CD/CB=CE/CA
nên DE//AB và DE/AB=CD/CB=1/2
=>DE=AF và DE//AF
=>DK//AF và DK=AF
=>ADKF là hình bình hành
Cho tam giác ABC , các đường trung tuyến AD,BE,CF ,trong đó AD vuông góc với BE, AD=3 cm; BE=4cm.
a)Vẽ điểm K sao cho D là trung điểm của EK. Chứng minh tứ giác AFKD là hình bình hành b)Tính CFCho tam giác ABC , các đường trung tuyến AD,BE,CF ,trong đó AD vuông góc với BE, AD=3 cm; BE=4cm.
a)Vẽ điểm K sao cho D là trung điểm của EK. Chứng minh tứ giác AFKD là hình bình hành
b)Tính CF
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau
tại H; O là giao điểm của 3 đường trung trực. Gọi I là điểm đối xứng với A qua O
a) Chứng minh: Tứ giác BHCI là hình bình hành. Tìm điều kiện của tam giác ABC để tứ giác BHCI là hình thoi
b) Tính tổng: \(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}\)
Cho tam giác ABC nhọn, các đường cao BE và CF cắt nhau tại H. Đường thẳng vuông góc với AB tại B và đường thẳng vuông góc với AC tại C cắt nhau ở D
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi O, M lần lượt là trung điểm của AD và BC. CM: 3 điểm H, M, D thẳng hàng và HA=2MO
c) Tam giác ABC cần có thêm điều kiện gì để BHCD là hình thoi
Cho tam giác nhọn ABC có AB<AC, các đường cao AD, BE, CF cắt nhau tại H. ĐƯờng thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại điểm K. Gọi M là trung điểm của BC, I là trung điểm của AK
a) CHứng minh: BE<CF và \(IM=\dfrac{1}{2}AH\)
b) Gọi G là trọng tâm của tam giác ABC. CHứng minh: 3 điểm H, G, I thẳng hàng.
c) CM: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tam giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1
cho tm giác ABC có AB<AC. Các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua B và vuông góc với AB tại K. M là trung điểm của BC. I là trung điểm của AK.
a) CM: BE<CF và IM=1/AH
b) Gọi G là trọng tâm tam giác ABC. CM: 3 điểm G, H, I thẳng hàng
c) CM: HD/AD=HE/BE=HF/CF=1