Cho tam giác ABC vuông tại A, đường phân giác BD (D thuộc AC) . Kẻ DE vuông BC (E thuộc BC). Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) tam giác ABD =tam giác EBD b) chứng minh BD vuông góc với CF c) chứng minh EDF thẳng hàng
Cho tam giác ABC có AB < AC. Kẻ AD vuông góc với BC (D thuộc BC). Lấy M là trung điểm của AD. Trên tia đối của tia MB lấy E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC.
a. CMR: AE = BD
b. So sánh AC và BD.
c. CMR: A, E, F thẳng hàng.
cho tam giác ABC có góc A là góc vuông. Trên tia đối tia AB lấy điểm D sao cho AB = AD. Trên tia đối tia AC lấy điếm E sao cho AC = AE. Lấy điểm I là trung điểm của DC. Chứng minh BE = 2AI
4/. Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm
a/ Tính BC
b/ Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh
DBC = DCB.
c/Trên tia BD lấy điểm E sao cho DE = DC, Cm: ∆ BEC vuông => DF là phân giác góc ADE.
d/ Chứng minh: BE FC
cho tam giác abc vuông tại a, trên tia đối của tia ac lấy điểm d sao cho ac= ad. đường trung trực của đoạn ad cắt bd tại e.câu a. cho ab = 8 cm,ac=6cm, tính bc.câu b. cm góc eda = góc ead.câu c. gọi f là trung điểm bc. chứng minh : ab,ce, df đồng quy
Tam giác ABC vuông tại có AB<AC,trên tia AC lấy điểm D sao cho AD=AB.Trên tia đối của tia AB lấy điểm E sao cho cho AE=AC.CM:
a) BC=DE
b) BC vuông góc với DE
Cho tam giác ABC( AB> AC ), M là trung điểm của BC. AD là phân giác góc BAC ( D thuộc BC). Trên tia đối MA lấy E sao cho MA= ME
a) BE= AC
b) Góc AEB > góc BAE
c) AB + CD> AC +BD
cho tam giác ABC, AB=AC.Tia phân giác của góc B cắt AC tại E. Trên BC lấy điểm F sao choBF=AB,EF cắt AB tại K.Chứng mình rằng:
a) AB=EF
b) EK=EC
c) BE vuông góc với AF