Sửa lại đề câu a và c là chứng minh vuông góc nha bạn
Gọi AD giao BE tại H
\(a,\left\{{}\begin{matrix}AB=AD\\\widehat{BAD}=\widehat{DAE}\\AH.chung\end{matrix}\right.\Rightarrow\Delta ABH=\Delta AEH\left(c.g.c\right)\\ \Rightarrow\widehat{AHB}=\widehat{AHE}\)
Mà \(\widehat{AHB}+\widehat{AHE}=180^0\Rightarrow\widehat{AHB}=\widehat{AHE}=90^0\)
Vậy \(AH\perp BE\) hay \(AD\perp BE\)
\(b,\left\{{}\begin{matrix}AD.chung\\AB=AE\\\widehat{BAD}=\widehat{DAE}\end{matrix}\right.\Rightarrow\Delta BAD=\Delta EAD\left(c.g.c\right)\\ \Rightarrow BE=BD;\widehat{DBA}=\widehat{DEA}\)
Mà \(\widehat{DBA}+\widehat{DBI}=180^0;\widehat{DEA}+\widehat{DEC}=180^0\)
\(\Rightarrow\widehat{DBI}=\widehat{DEC}\)
Mà \(BD=DC\left(cm.trên\right);\widehat{BDI}=\widehat{CDE}\left(đđ\right)\)
\(\Rightarrow\Delta BID=\Delta ECD\left(g.c.g\right)\\ \Rightarrow BI=EC\\ \Rightarrow BI+AB=EC+AE\\ \Rightarrow AI=AC\)