a) tg ABC vuông tại A => sabc = AB.AC/2 = AH.BC/2 = 6
AH = 12/5= 2,4
b) tg BEH đồng dạng tg HFC => BE/HF = BH/HC => BE.HC = BH.HF (đpcm)
a) tg ABC vuông tại A => sabc = AB.AC/2 = AH.BC/2 = 6
AH = 12/5= 2,4
b) tg BEH đồng dạng tg HFC => BE/HF = BH/HC => BE.HC = BH.HF (đpcm)
cho tam giác ABC vuông tại A có đường cao AH. Gọi E và F lần lượt là hình chiếu của H trên AB,AC. cho BH= 3cm, CH= 12cm
a, tính độ dài các cạnh AB,AC
b, chứng minh HF= 2HE
c, từ C kẻ đường thẳng vuông góc với BC, đường thẳng này cắt đường thẳng AB tại I, kẻ AK vuông góc với CI tại K. chứng minh
CI^3/CB^3= IK/BH
Cho tam giác ABC vuông tại A, đường cao AH, kẻ HE vuông góc với AB (E thuộc AB), kẻ HF vuông góc với AC (F thuộc AC)
a, Chứng minh AE . AB = AF. AC = BH . HC
b, Cho AB =\(\sqrt{12}\) cm, HC = 4cm. Tính AB, BC
c, AE . EB + AF . FC = BH . HC
d, AH\(^3\) = BC. HE. HF
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, trung tuyến AM.
a) Chứng minh : AB^2 = 2BH x AM
b) Từ B vẽ đường thẳng vuông góc với AM tại E, B cắt AC tại F.
chứng minh : BE x BF = BH x BC=AF x AC.
Mọi ng giúp e vs ạ.
Cho tam giác ABC vuông tại A, đường cao AH
a) Biết AB = 3cm; AC = 4cm. Tính độ dài các đoạn BC, HB, HC, AH
b) Vẽ AH vuông góc với AB tại E, HF vuông góc với AC tại F
1) CMR: AE.EB = \(EH^2\)
2) AE.EB + AF.FC = \(AH^2\)
Cho tam giác ABC vuông tại A, đường cao AH a. Cho AH = 6; BH = 4. Tính AC, BC. b. Cho AB = 15; HC = 16. Tính BH, AC. c. Cho AH = 6; AB : AC = 3 : 4. Tính chu vi và diện tích tam giác ABC.
Cho ABC vuông tại A, đường cao AH. Biết HB = 3,6cm; HC = 6,4cm
a) Tính độ dài các đoạn thẳng AB, AC, AH.
b) Kẻ HE vuông góc AB ( E thuộc AB) và HF vuông góc AC (F thuộc AC). Chứng minh rằng: AB.HE + AC.HF = AB.AC.
Bài 2: Cho tam giác ABC nhọn có đường cao AH. Gọi E là hình chiếu của H trên AB.
a, Biết AE = 3,6 cm ; BE = 6,4 cm. Tính AH, EH và góc B ( Số đo góc làm tròn đến độ)
b, Kẻ HF vuông góc với AC tại F. Chứng minh AB . AE = AC . AF
c , Đường thẳng qua A và vuông góc với EF cắt BC tại D; EF cắt AH tại O.
C1, Chứng minh tam giác AEF đồng dạng với tam giác ACB
C2, Chứng minh:
Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH=4,5cm. Tính AB,AC,BC,HC. b) Biết AB = 6cm, BH=3cm. Tính AH,AC,CH
1. Cho tam giác ABC vuông tại A có AB = 9 cm , BC = 15 cm , AH là đường C10 ( H thuộc cạnh BC ) . Tính BH , CH , AC và AH ,
2. Cho tam giác ABC vuông tại A có AC = 5 cm , AB = 4 cm . Tính : a ) Cạnh huyền BC . b ) Hình chiếu của AB và AC trên cạnh huyền . c ) Đường cao AH .
3. Cho tam giác ABC vuông tại A có BC = 40 cm , AC = 36 cm . Tính AB , BH , CH và AH ,
4. Cho tam giác ABC vuông tại A có BC = 24 cm . Tính AB , AC , cho biết 2 AB = -AC .
5. Cho tam giác ABC vuông tại A có AH là đường cao . BH = 10 cm , CH = 42 cm . Tính BC , AH , AB và AC ,
6. Cho đường tròn tâm O bán kính R = 10 cm . A , B là hai điểm trên đường tròn ( O ) và I là trung điểm của đoạn thẳng AB . a ) Tính AB nếu OI = 7 cm . b ) Tính OI nếu AB = 14 cm .