Đặt \(z=x+yi\Rightarrow x^2+y^2=1\)
\(P=\left|x+1+yi\right|+2\left|1-x-yi\right|=\sqrt{\left(x+1\right)^2+y^2}+2\sqrt{\left(1-x\right)^2+y^2}\)
\(=\sqrt{x^2+y^2+2x+1}+2\sqrt{x^2+y^2-2x+1}\)
\(=\sqrt{2x+2}+2\sqrt{-2x+2}\le\sqrt{\left(1^2+2^2\right)\left(2x+2-2x+2\right)}=2\sqrt{5}\)
\(\Rightarrow P_{max}=2\sqrt{5}\) khi \(2x+2=\frac{-2x+2}{4}\Rightarrow x=-\frac{3}{5}\)