Chương 4: SỐ PHỨC

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Phương Nam

Cho số phức z thỏa mãn điều kiện \(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\). Tính Môdun của z

Phương Thảo
7 tháng 4 2016 lúc 11:19

Giả sử: \(z=x+yi (x;y\in |R)\)

Ta có: \(2(z+1)=3\overline{z}+i(5-i) \)

     <=>\(2(x+yi+1)=3(x-yi)+i(5-i)\)

     <=>\(2x+2yi+2=3x-3yi+5i-i^2\)

     <=>\((3x-2x+1-2)+(5-3y-2y)i=0\)

     <=>\((x-1)+(5-5y)i=0\)

     <=>\(\begin{align} \begin{cases} x-1&=0\\ 5-5y&=0 \end{cases} \end{align}\)

     <=>\(\begin{align} \begin{cases} x&=1\\ y&=1 \end{cases} \end{align}\)

Suy ra: z=1+i =>|z|=\(\sqrt{2}\)

Nguyễn Kim Khánh Hà
7 tháng 4 2016 lúc 11:21

Đặt \(z=a+bi,\left(a,b\in R\right)\), khi đó :

\(2\left(z+1\right)=3\overline{z}+i\left(5-i\right)\Leftrightarrow2\left(a+bi+1\right)=3\left(a-bi\right)+1+5i\Leftrightarrow a-1+5\left(1-b\right)i=0\)

\(\Leftrightarrow\begin{cases}a=1\\b=1\end{cases}\) \(\Leftrightarrow\left|z\right|=\sqrt{2}\)


Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
Phan Trần Quốc Bảo
Xem chi tiết
AllesKlar
Xem chi tiết
Pham Tien Dat
Xem chi tiết
AllesKlar
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Đỗ Thùy Dương
Xem chi tiết
Nguyễn Tùng Anh
Xem chi tiết
AllesKlar
Xem chi tiết