1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
Cho p là số nguyên tố . Tìm n \(\in\) Z để A=n4+4np-1 chính phương.
tìm số nguyên tố p và các số nguyên dương a,b sao cho \(p^a+p^b\) là số chính phương
1.Cho p là số nguyên tố và 8p-1 là số nguyên tố.Hỏi 8p+1 là số nguyên tố hay hợp số?
2.Cmr nếu p là một số nguyên tố lớn hơn 3 thì \(p^2-1⋮24\)
Chứng minh rằng tồn tại vô số số nguyên dương a sao cho Z=n4+a không là số nguyên tố ∀n ∈ N*
Cho a, b, c, d thuộc N* thỏa mãn ab=cd. Số a+b+c+d có thể là số nguyên tố hay không?
Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: \(A=p^{8n}+23p^{4n}+16\) chia hết cho 5.
cho N=\(1.2.3+2.3.4+....+n\left(n+1\right)\left(n+2\right)\)
cmr: 4N+1 là số chinh phương \(\forall n\in Z^+\)