Lời giải:
Ta có:
\(A=\tan ^3a+\cot ^3a=\frac{\sin ^3a}{\cos ^3a}+\frac{\cos ^3a}{\sin ^3a}\)
\(=\frac{(\sin a)^6+(\cos a)^6}{(\sin a\cos a)^3}\)
\(=\frac{(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)}{(\sin a\cos a)^3}\)
\(=\frac{\sin^4 a-\sin ^2a\cos ^2a+\cos ^4a}{(\sin a\cos a)^3}\)
\(=\frac{(\sin ^2a+\cos ^2a)^2-3\sin ^2a\cos ^2a}{(\sin a\cos a)^3}=\frac{1-3(\sin a\cos a)^2}{(\sin a\cos a)^3}(*)\)
Mặt khác: \(\sin a+\cos a=1,366\)
\(\Rightarrow \sin ^2a+2\sin a\cos a+\cos ^2a=1,366^2\)
\(\Rightarrow 2\sin a\cos a=1,366^2-1\Rightarrow \sin a\cos a=\frac{1,366^2-1}{2}\)
Thay vào A ở $(*)$ suy ra:
\(A\approx 5,391\)