có hay ko các số nguyên lẻ a1, a2, a3,..., a6 thỏa mãn
a1+a2+a3+a4+a5=a6
Câu 1 : Cho a, b, c, d ϵ Z ; b là TB cộng của a và c
và \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{d}\right)\)
CMR a,b,c,d lập được thành 1 tỉ lệ thức
Câu 2 : Cho \(a_1\cdot a_3=a^2_2\) ; \(a_2\cdot a_4=a^2_3\)
CMR \(\dfrac{a_1^3+a^3_2+a_3^3}{a_2^3+a_3^3+a^3_4}=\dfrac{\left(a_1+a_2+a_3\right)^3}{\left(a_2+a_3+a_4\right)}=\dfrac{a_1}{a_4}\)
Câu 3 : Cho :
\(\dfrac{xn-ym}{p^2}=\dfrac{yp-zn}{m^2}=\dfrac{mz-xp}{n^2}\)
CMR x,y,z tỉ lệ với m,n,p
3/ Cho 2 đường thẳng a và b cắt nhau tại O. Trên a lấy 3 điểm A1, A2, A3 khác O. Trên b lấy 3 điểm B1, B2, B3 khác O.
Hỏi có bao nhiêu tam giác được tạo thành từ 3 trong 7 điểm A1, A2, A3, B1, B2, B3 và O
Nếu a1b1=a2b2 thì: A. a1/a2=b1/b2 B. a1/a2=b2/b1 C. a1/b2=a2/b1 D. a1/b2=b1/a2
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b-c}{c}\) =\(\dfrac{a+c-b}{b}\)=\(\dfrac{b+c-a}{a}\)
Tính P= \(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Cho x,y là các số hữu tỉ thỏa mãn \(\dfrac{x}{3}=\dfrac{y}{5}\)và xy=60
Tính\(\left|x+2y\right|\)
Biết x,y là các số hữu tỉ thỏa mãn\(\dfrac{x}{4}=\dfrac{y}{7}\)và xy=112
Tính \(\left|2x+y\right|\)
\(\left(\dfrac{1}{2}\right)^5:\left(\dfrac{1}{3}\right)^2+2.\left(-\dfrac{1}{2}\right)^2-2021^0\)
Cho các số a,b,c khác 0 thỏa mãn \(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Tính A = \(\dfrac{a}{b+c}+\dfrac{a+b}{c}\) ( b + c ≠ 0 )