\(S=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3S=3^2+3^3+...+3^{101}\)
\(\Rightarrow3S-S=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3S-S=3^{101}-3\)
\(\Rightarrow2S=3^{101}-3\)
\(\Rightarrow2S+3=3^{101}-3+3=3^{101}\)
Vậy \(2S+3\) là luỹ thừa của 3