Cho 2 số thực dương \(x,y\) thỏa mãn \(x+y+xy=3\)
Tìm Min \(\dfrac{x\sqrt{x}}{\sqrt{x+3y}}+\dfrac{y\sqrt{y}}{\sqrt{y+3x}}\)
Để bất phương trình \(\sqrt{\left(x+5\right)\left(3-x\right)}\le x^2+2x+a\) nghiệm đúng \(\forall x\in\left[-5;3\right]\) tham số a phải thỏa mãn đk?
Cho x, y, z là các số thực dương. Chứng minh rằng
\(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\le\frac{3\sqrt{3}}{2}\) nếu x + y + z = xyz
1. Giải bpt: \(\sqrt{x-2}-2\ge\sqrt{2x-5}-\sqrt{x+1}\)
2. Với \(x\in\left(0;1\right)\) tìm Min \(P=\dfrac{\sqrt{1-x}\left(1+\sqrt{1-x}\right)}{x}+\dfrac{5}{\sqrt{1-x}}\)
Bài 1: Cho số thực dương ab + bc + ca =1. Tìm GTLN của
\(P=\dfrac{2a}{\sqrt{1+a^2}}+\dfrac{b}{\sqrt{1+b^2}}+\dfrac{c}{\sqrt{1+c^2}}\)
Bài 2: Cho x,y,z là số thực dương thỏa mãn x+y+z=xyz . CMR:
\(\dfrac{1+\sqrt{1+x^2}}{x}+\dfrac{1+\sqrt{1+y^2}}{y}+\dfrac{1+\sqrt{1+z^2}}{z}\le xyz\)
Tồn tại duy nhất một giá trị m để bất phương trình \(x^2\le2mx-m^2+m-3\) có tập nghiệm \(S=\left[x_1;x_2\right]\) thỏa mãn điều kiện \(\sqrt{x^2_1+2mx_2+m^2-m+3}=\left|m-9\right|\). Tìm m
Cho tam thức f(x) = \(2x^2-3x+1\) . Trong các khẳng định sau , khẳng định nào đúng ?
A,f(x) > 0 với \(\forall x\in\left(\dfrac{1}{2};1\right)\)
B,\(f\left(x\right)>0\) với \(\forall x\in\left(-\infty;1\right)\)
C, f(x) < 0 với \(\forall x\in\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
D,f(x) >0 với \(\forall x\in\left(-\infty;\dfrac{1}{2}\right)\cup\left(1;+\infty\right)\)
a) y=\(\sqrt{3-2x}\)
b) y=\(\sqrt{4x+1}-\sqrt{-2x+1}\)
c) y=\(\dfrac{7+x}{X^2+2x-5}\)
d) y=\(\dfrac{\sqrt{4x+3}}{\sqrt{2-x}}\)
e) y=\(\dfrac{\sqrt{x+9}}{x^2+8x-20}\)
Cho hàm số \(f\left(x\right)=\sqrt{\dfrac{4m^2-x^3}{x\left|x\right|-m}}\left(m\in N,m\le20\right)\) có tập xác định D. Có bao nhiêu giá trị m để \(D\cap N^{\cdot}\)có nhiều hơn 2 phần tử