1. so sánh
a. 3 + \(\sqrt{5}và\) \(\sqrt{2}+\sqrt{6}\) b. 2 + \(\sqrt{3}\) và \(\sqrt{5+4\sqrt{ }3}\)
c. \(\sqrt{5}+\sqrt{7}\) và \(\sqrt{12+2\sqrt{ }35}\) d. \(\sqrt{2013}\) + \(\sqrt{2015}\) và 2\(\sqrt{2014}\)
2.tính
a. \(\sqrt{14+6\sqrt{ }5}\) + \(\sqrt{14-6\sqrt{ }5}\) b. \(\sqrt{6+4\sqrt{ }2}+\sqrt{11-6\sqrt{ }2}\)
c. \(\sqrt{29-12\sqrt{ }5}-\sqrt{29+12\sqrt{ }5}\) d. \(\sqrt{30+10\sqrt{ }7}+\sqrt{30-10\sqrt{ }7}\)
e.\(\sqrt{30+12\sqrt{ }6}+\sqrt{30-12\sqrt{ }6}\) f. \(\sqrt{4+\sqrt{ }7}-\sqrt{4-\sqrt{ }7}-\sqrt{2}\)
\(\sqrt{3-2\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
\(\sqrt{4-2\sqrt{3}}-\sqrt{7-4\sqrt{3}}+\sqrt{19+8\sqrt{3}}\)
\(\sqrt{6-2\sqrt{5}}+\sqrt{9+4\sqrt{5}}-\sqrt{14-6\sqrt{5}}\)
\(\sqrt{11-4\sqrt{7}}+\sqrt{23-8\sqrt{7}}+\sqrt{\left(-2^6\right)}\)
rút gọn:giải chi tiết hộ mình nha
Bài 1: Tính
1, \(A=\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
2, \(B=\left(\frac{3\sqrt{125}}{15}-\frac{10-4\sqrt{6}}{\sqrt{5}-2}\right).\frac{1}{\sqrt{5}}\)
3, \(C=\left(\frac{\sqrt{1000}}{100}-\frac{5\sqrt{2}-2\sqrt{5}}{2\sqrt{5}-8}\right).\frac{\sqrt{10}}{10}\)
4, \(D=\frac{1}{\sqrt{49+20\sqrt{6}}}-\frac{1}{\sqrt{49-20\sqrt{6}}}+\frac{1}{\sqrt{7-4\sqrt{3}}}\)
5, \(E=\frac{1}{\sqrt{4-2\sqrt{3}}}-\frac{1}{\sqrt{7-\sqrt{48}}}+\frac{3}{\sqrt{14-6\sqrt{5}}}\)
6, \(F=\frac{1}{\sqrt{2}-\sqrt{3}}\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
7, \(G=\frac{\sqrt{15-10\sqrt{2}}+\sqrt{13+4\sqrt{10}-\sqrt{11-2\sqrt{10}}}}{2\sqrt{3+2\sqrt{2}}+\sqrt{9-4\sqrt{2}+\sqrt{12+8\sqrt{2}}}}\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{9-2\sqrt{6}}-\sqrt{6}}{\sqrt{3}}\) b)\(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
c) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) d) \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
e) \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\) f) \(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}\)
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D= \(\dfrac{\left(5+4\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Tính (Rút gọn):
a) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
b)\(\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{15}}\)
c)\(\left(\sqrt{5+2\sqrt{9\sqrt{5}-19}}-\sqrt{7-\sqrt{5}}\right):2\sqrt{\sqrt{5}-2}\)
d)\(\frac{\sqrt{9+\sqrt{5}}+\sqrt{9-\sqrt{5}}}{\sqrt{9+2\sqrt{19}}}-\sqrt{3-2\sqrt{2}}\)
Bài 1: Rút gọn
a)\(\sqrt{4+\sqrt{10+2\sqrt{5}}}\)+\(\sqrt{4-\sqrt{10+2\sqrt{5}}}\) ,
b)\(\sqrt{4+\sqrt{15}}\)+\(\sqrt{4-\sqrt{15}}\)-\(2\sqrt{3-\sqrt{5}}\)
c)A=\(\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
d)B=\(\sqrt{6+2\sqrt{2}\sqrt{3-\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{18-8\sqrt{2}}}}}\)
e)C=\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
f)D=\(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\left(5-2\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)
Mình sửa lại để m.n dễ nhìn hơn!
a) \(\sqrt{3^2}-\sqrt{\left(7\right)^2}+\sqrt{\left(-1\right)^2}\)
b)\(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}\)
c)\(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
d)\(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)
e)\(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
f)\(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}\)
g)\(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
h)\(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
k)\(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}\)
Không dùng máy tính; hãy so sánh các số thực sau:
a) \(\sqrt{17}+\sqrt{26}\) và 9 b) \(\sqrt{48}\)và 13-\(\sqrt{35}\)
c) \(\sqrt{31}-\sqrt{19}\)và 6-\(\sqrt{17}\) d) 9-\(\sqrt{58}\)và \(\sqrt{80}-\sqrt{59}\)
e) \(\sqrt{13}-\sqrt{12}\)và \(\sqrt{12}-\sqrt{11}\) f) \(\sqrt{7-\sqrt{21+4\sqrt{5}}}\)và \(\sqrt{5}\) -1
g) \(\sqrt{5}+\sqrt{10}+1\)và \(\sqrt{35}\) h) \(\dfrac{15-2\sqrt{10}}{3}\) và \(\sqrt{15}\)
i) \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}\) (100 dấu căn) và 3