Ta có P(x)= x4+ax3+bx2+cx+d
Đặt P(x)= (x-2013)(x-2014)(x-2015)(x-x0)+mx2+nx+p
P(2013)=2014=>4052169m+2013n+p=2014} m=0
P(2014)=2015=>4056196m+2014n+p=2015}=> n=1
P(2015)=2016=>4060225m+2015n+p=2016} p=1
=>P(x)= (x-2013)(x-2014)(x-2015)(x-x0)+x+1
=>.) P(2012)= -6(2012-x0)+2012+1
= -12072+6x0+2013=-10059+6x0
.)P(2016)=6(2016-x0)+2016+1
=12096-6x0+2017=14113-6x0
=> P(2012)+P(2016)= -10059+6x0+14113-6x0=4054