a.Thay \(x=1\) vào phương trình \(x^3+ax^2-4x-4=0\) , ta có:
\(1^3+a.1^2-4.1-4=0\\ \Leftrightarrow1+a-4-4=0\\\Leftrightarrow a-7=0\\\Leftrightarrow a=7\)
Vậy \(a=7\) để phương trình \(x^3+ax^2-4x-4=0\) có nghiệm \(x=1\)
b. Thay \(a=7\) vào phương trình \(x^3+ax^2-4x-4=0\) ta có:
\(x^3+7x^2-4x-4=0\\\Leftrightarrow x^3-x^2+8x^2-8x+4x-4=0\\ \Leftrightarrow x^2\left(x-1\right)+8x\left(x-1\right)+4\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2+8x+4\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+4-2\sqrt{3}\right)\left(x+4+2\sqrt{3}\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-1=0\\x+4-2\sqrt{3}=0\\x+4+2\sqrt{3}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-4+2\sqrt{3}\\x=-4-2\sqrt{3}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-4+2\sqrt{3};-4-2\sqrt{3}\right\}\)