Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
khong có

 

Cho pt \(x^2-\left(m-3\right)x-2m+2=0\)

Gọi x1, x2 là 2 nghiệm của pt đã cho. Tìm m để \(x_2^2-x_1=2\)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 19:52

Sửa đề: \(x_2^2-x_1^2=2\)

Ta có: \(\Delta=\left[-\left(m-3\right)\right]^2-4\cdot1\cdot\left(-2m+2\right)\)

\(=\left(m-3\right)^2-4\left(-2m+2\right)\)

\(=m^2-6m+9+8m-8\)

\(=m^2+2m+1\)

\(=\left(m+1\right)^2\ge0\forall m\)

Do đó: Phương trình luôn có hai nghiệm với mọi m

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1\cdot x_2=-2m+2\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4\cdot x_1x_2\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=\left(m-3\right)^2-4\left(-2m+2\right)\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=m^2-6m+9+8m-8=m^2-2m+1\)

\(\Leftrightarrow x_1-x_2=m-1\)

Ta có: \(x_2^2-x_1^2=2\)

\(\Leftrightarrow\left(x_2-x_1\right)\left(x_2+x_1\right)=2\)

\(\Leftrightarrow\left(1-m\right)\left(m-3\right)=2\)

\(\Leftrightarrow m-3-m^2+3m-2=0\)

\(\Leftrightarrow-m^2+4m-5=0\)

\(\Leftrightarrow m^2-4m+5=0\)(Vô lý)

Vậy: Không có giá trị nào của m để phương trình có hai nghiệm thỏa mãn \(x_2^2-x_1^2=2\)

Nguyễn Việt Lâm
21 tháng 4 2021 lúc 23:01

\(\Delta=\left(m-3\right)^2-4\left(-2m+2\right)=\left(m+1\right)^2\ge0\) ;\(\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-3\\x_1x_2=-2m+2\end{matrix}\right.\)

\(x_2^2-x_1=2\Leftrightarrow x_2\left(x_1+x_2\right)-x_1x_2-x_1=2\)

\(\Leftrightarrow\left(m-3\right)x_2+2m-2-x_1=2\)

\(\Leftrightarrow\left(m-2\right)x_2-\left(x_1+x_2\right)+2m-4=0\)

\(\Leftrightarrow\left(m-2\right)x_2-m+3+2m-4=0\)

\(\Leftrightarrow\left(m-2\right)x_2=-m+1\Rightarrow x_2=\dfrac{-m+1}{m-2}\)

\(\Rightarrow x_1=m-3-x_2=\dfrac{m^2-4m+5}{m-2}\)

Thế vào \(x_1x_2=-2m+2\)

\(\Rightarrow\left(\dfrac{-m+1}{m-2}\right)\left(\dfrac{m^2-4m+5}{m-2}\right)=-2m+2\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\\dfrac{m^2-4m+5}{\left(m-2\right)^2}=2\left(1\right)\end{matrix}\right.\)

(1) \(\Leftrightarrow m^2-4m+5=2m^2-8m+8\)

\(\Leftrightarrow m^2-4m+3=0\Rightarrow\left[{}\begin{matrix}m=1\\m=3\end{matrix}\right.\)