a) Ta có :
Δ = 4m2 - 4 ( m - 2 )
=4m2 - 4m + 8 = ( 2m - 1 )2 + 7 > 0
⇒ (1) luôn có nghiệm phân biệt ∀ m
b) AD hệ thức Vi - ét , ta có : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)
( 1 + x1 ) ( 2 - x2 ) + ( 1 + x2 ) ( 2 - x1 ) = x12 + x22 + 2
⇔ 2 - x2 + 2x1 - x1x2 + 2 - x1 + 2x2 - x1x2 = x12 + x22 + 2
⇔ x1 + x2 - 2x1x2 + 4 = ( x1 + x2 )2 - 2x1x2 + 2
⇔ ( x1 + x2 ) - ( x1 + x2 )2 + 2 = 0
⇔ 2m - 4m2 + 2 = 0 ⇔ 4m2 - 2m - 2 = 0
⇔ ( m - 1 ) ( 4m + 2 ) = 0
\(\Leftrightarrow\left\{{}\begin{matrix}m-1=0\\4m+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=-\frac{1}{2}\end{matrix}\right.\)
Vậy . . . . . . . . .