\(\text{Δ}=\left(2m+8\right)^2-4\left(m^2-8\right)\)
\(=4m^2+32m+64-4m^2+64=32m+128\)
Để phương trình có hai nghiệm thì 32m+128>=0
hay m>=-4
a: \(A=x_1+x_2-3x_1x_2\)
\(=\left(2m+8\right)-3\left(m^2-8\right)\)
\(=2m+8-3m^2+24\)
\(=-3m^2+2m+32\)
\(=-3\left(m^2-\dfrac{2}{3}m-\dfrac{32}{3}\right)\)
\(=-3\left(m^2-2\cdot m\cdot\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{97}{9}\right)\)
\(=-3\left(m-\dfrac{1}{3}\right)^2+\dfrac{97}{3}< =\dfrac{97}{3}\)
Dấu '=' xảy ra khi m=1/3
b: \(B=\left(x_1+x_2\right)^2-2x_1x_2-2\)
\(=\left(2m+8\right)^2-2\left(m^2-8\right)-2\)
\(=4m^2+32m+64-2m^2+16-2\)
\(=2m^2+32m+78\)
\(=2\left(m^2+16m+39\right)\)
\(=2\left(m^2+16m+64-25\right)\)
\(=2\left(m+8\right)^2-50>=-50\)
Dấu '=' xảy ra khi m=-8