Lời giải:
Đặt \(\sqrt{(1-x)+(1-x)\sqrt{1-x^2}}=a; \sqrt{(1-x)-(1-x)\sqrt{1-x^2}}=b\)
Khi đó: \(P=a+b\geq 0\)
Ta có:
\(a^2+b^2=(1-x)+(1-x)\sqrt{1-x^2}+(1-x)-(1-x)\sqrt{1-x^2}=2(1-x)\)
Và:
\(ab=(1-x)\sqrt{(1+\sqrt{1-x^2})(1-\sqrt{1-x^2})}\)
\(=(1-x)\sqrt{1-(1-x^2)}=(1-x)\sqrt{x^2}=|x|(1-x)\)
\(\Rightarrow P^2=(a+b)^2=a^2+b^2+2ab=2(1-x)+2|x|(1-x)\)
\(=2(1-x)(1+|x|)=\frac{4036}{2017}.\frac{2018}{2017}\)
\(\Rightarrow P=\sqrt{\frac{4036.2018}{2017^2}}=\frac{\sqrt{4036.2018}}{2017}\)