Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Thu Ngọc

Cho P=\(\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

a.Rút gọn

b.Tính P khi x=\(\dfrac{3-2\sqrt{2}}{4}\)

c.So sánh P với \(\dfrac{3}{2}\)

Mysterious Person
2 tháng 9 2018 lúc 8:46

a) điều kiện xác định : \(x\ge0;x\ne\dfrac{9}{4}\)

ta có : \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{2x-\sqrt{x}-3}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(\Leftrightarrow P=\left(\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\) \(\Leftrightarrow P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1+\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{2x+3\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\right):\left(\dfrac{2\sqrt{x}-3}{2\sqrt{x}+1}\right)=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)

b) thay \(x=\dfrac{3-2\sqrt{2}}{4}=\left(\dfrac{\sqrt{2}-1}{2}\right)^2\) vào \(P\) ta có :

\(P=\dfrac{3\sqrt{\left(\dfrac{\sqrt{2}-1}{2}\right)^2}-5}{2\sqrt{\left(\dfrac{\sqrt{2}-1}{2}\right)^2}+1}=\dfrac{3\left(\dfrac{\sqrt{2}-1}{2}\right)-5}{2\left(\dfrac{\sqrt{2}-1}{2}\right)+1}=\dfrac{6-13\sqrt{2}}{4}\)

c) ta có : \(P-\dfrac{3}{2}=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}-\dfrac{3}{2}=\dfrac{3\sqrt{x}-5-3\sqrt{x}-\dfrac{3}{2}}{2\sqrt{x}+1}\)

\(=\dfrac{\dfrac{-13}{2}}{2\sqrt{x}+1}< 0\) \(\Rightarrow P< \dfrac{3}{2}\)


Các câu hỏi tương tự
thu dinh
Xem chi tiết
Tuyết Linh Linh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
nguyen ngoc son
Xem chi tiết
thu dinh
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nghịch Dư Thủy
Xem chi tiết
Trần Ích Bách
Xem chi tiết
Thánh cao su
Xem chi tiết