\(\Delta'=m^2-m^2+m-1=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m+1\end{matrix}\right.\)
\(S=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4m^2-2\left(-m+1\right)\)
\(=4m^2+2m+1\)
Xét \(f\left(m\right)=4m^2+2m+1\) trên \([1;+\infty)\)
\(a=4>0\) ; \(-\frac{b}{2a}=-\frac{1}{4}< 1\Rightarrow f\left(m\right)\) đồng biến trên \([1;+\infty)\)
\(\Rightarrow S_{min}=f\left(m\right)_{min}=f\left(1\right)=7\)