Cho PT \(x^2-2\left(m+1\right)x+m^2+2m=0\) ( m là tham số). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\) ( với \(x_1< x_2\)) thảo mãn \(\left|x_1\right|=3\left|x_2\right|\)
Cho phương trình: \(x^2+\left(2m+1\right)x+m^2-1=0\) (1) ( x là ẩn số). Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn: \(\left(x_1-x_2\right)^2=x_1-5x_2\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Cho PT: \(x^2-\left(3m-1\right)x+2m^2-m=0\). Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn: \(x_1=x_2^2\)
Cho pt \(2017x^2-\left(m-2018\right)x-2019=0\) với m là tham số. Tìm m để pt có hai nghiệm x1, x2 thỏa \(\sqrt{x_1^2+2018}-x_1=\sqrt{x_2^2+2018}+x_2\)
cho phương trình ẩn x: \(x-\sqrt{6x}-3+2m=0\left(1\right)\)
tìm m để pt có 2 nghiệm x = x1, x = x2 thỏa mãn \(\frac{x_1+x_2}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)
Cho phương trình : \(x^2-2\left(2m+5\right)+2m+1=0\)
a) Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\) để biểu thức A =\(\left|\sqrt{x_1}\right|-\left|\sqrt{x_2}\right|\) đạt GTNN
Cho pt: \(x^2+mx+2m+14=0\)
Tìm m để pt có 2 nghiệm \(x_1,x_2\) sao cho \(\sqrt{x^2_2+2\left(m+1\right)x_2+2m+14}=3-\sqrt{x_1}\)
Cho pt:\(x^2-2\left(m+3\right)x+2m+5=0\)
a)Tìm m để pt có 2 nghiệm \(x_1,x_2\) thõa mãn :\(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{4}{3}\)